Augmented utilization of branched-chain amino acids by skeletal muscle in decompensated liver cirrhosis in special relation to ammonia detoxication

1981 ◽  
Vol 16 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Masanori Hayashi ◽  
Hiroo Ohnishi ◽  
Yasuhiko Kawade ◽  
Yasutoshi Muto ◽  
Yoshiyata Takahashi
2021 ◽  
pp. 293-305
Author(s):  
M Holeček

The article shows that skeletal muscle plays a dominant role in the catabolism of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) and the pathogenesis of their decreased concentrations in liver cirrhosis, increased concentrations in diabetes, and nonspecific alterations in disorders with signs of systemic inflammatory response syndrome (SIRS), such as burn injury and sepsis. The main role of skeletal muscle in BCAA catabolism is due to its mass and high activity of BCAA aminotransferase, which is absent in the liver. Decreased BCAA levels in liver cirrhosis are due to increased use of the BCAA as a donor of amino group to α-ketoglutarate for synthesis of glutamate, which in muscles acts as a substrate for ammonia detoxification to glutamine. Increased BCAA levels in diabetes are due to alterations in glycolysis, citric acid cycle, and fatty acid oxidation. Decreased glycolysis and citric cycle activity impair BCAA transamination to branched-chain keto acids (BCKAs) due to decreased supply of amino group acceptors (α-ketoglutarate, pyruvate, and oxaloacetate); increased fatty acid oxidation inhibits flux of BCKA through BCKA dehydrogenase due to increased supply of NADH and acyl-CoAs. Alterations in BCAA levels in disorders with SIRS are inconsistent due to contradictory effects of SIRS on muscles. Specifically, increased proteolysis and insulin resistance tend to increase BCAA levels, whereas activation of BCKA dehydrogenase and glutamine synthesis tend to decrease BCAA levels. The studies are needed to elucidate the role of alterations in BCAA metabolism and the effects of BCAA supplementation on the outcomes of specific diseases.


1998 ◽  
Vol 37 (5) ◽  
pp. 429-434 ◽  
Author(s):  
Masahiko KATO ◽  
Yoshiyuki MIWA ◽  
Masahiro TAJIKA ◽  
Tetsuya HIRAOKA ◽  
Yasutoshi MUTO ◽  
...  

1986 ◽  
Vol 250 (4) ◽  
pp. E407-E413 ◽  
Author(s):  
R. A. Gelfand ◽  
M. G. Glickman ◽  
R. Jacob ◽  
R. S. Sherwin ◽  
R. A. DeFronzo

To compare the contributions of splanchnic and skeletal muscle tissues to the disposal of intravenously administered amino acids, regional amino acid exchange was measured across the splanchnic bed and leg in 11 normal volunteers. Postabsorptively, net release of amino acids by leg (largely alanine and glutamine) was complemented by the net splanchnic uptake of amino acids. Amino acid infusion via peripheral vein (0.2 g X kg-1 X h-1) caused a doubling of plasma insulin and glucagon levels and a threefold rise in blood amino acid concentrations. Both splanchnic and leg tissues showed significant uptake of infused amino acids. Splanchnic tissues accounted for approximately 70% of the total body amino acid nitrogen disposal; splanchnic uptake was greatest for the glucogenic amino acids but also included significant quantities of branched-chain amino acids. In contrast, leg amino acid uptake was dominated by the branched-chain amino acids. Based on the measured leg balance, body skeletal muscle was estimated to remove approximately 25-30% of the total infused amino acid load and approximately 65-70% of the infused branched-chain amino acids. Amino acid infusion significantly stimulated both the leg efflux and the splanchnic uptake of glutamine (not contained in the infusate). We conclude that when amino acids are infused peripherally in normal humans, splanchnic viscera (liver and gut) are the major sites of amino acid disposal.


1983 ◽  
Vol 244 (2) ◽  
pp. E151-E158 ◽  
Author(s):  
J. T. Brosnan ◽  
K. C. Man ◽  
D. E. Hall ◽  
S. A. Colbourne ◽  
M. E. Brosnan

Amino acid concentrations in whole blood, liver, kidney, skeletal muscle, and brain were measured and arteriovenous differences calculated for head, hindlimb, kidney, gut, and liver in control and streptozotocin-diabetic rats. In the control rats, glutamine was released by muscle and utilized by intestine, intestine released citrulline and alanine, liver removed alanine, and the kidneys removed glycine and produced serine. In diabetic rats, the major changes from the pattern of fluxes seen in the normal rat were the release of many amino acids from muscle, with glutamine and alanine predominating, and the uptake of these amino acids by the liver. Glutamine removal by the intestine was suppressed in diabetes, but a large renal uptake of glutamine was evident. Branched-chain amino acids were removed by the diabetic brain, and consequently, brain levels of a number of large neutral amino acids were decreased in diabetes.


Sign in / Sign up

Export Citation Format

Share Document