Guidelines for managing wildlife habitats in southwestern ponderosa pine forests of the United States

1997 ◽  
Vol 8 (2) ◽  
pp. 108-110 ◽  
Author(s):  
Peter F. Ffolliott
Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1119
Author(s):  
Brett Alan Miller ◽  
William D. Pearse ◽  
Courtney G. Flint

Ponderosa pine forests in the southwestern United States of America are overly dense, increasing the risk of high-intensity stand-replacing wildfires that result in the loss of terrestrial carbon and release of carbon dioxide, contributing to global climate change. Restoration is needed to restore forest structure and function so that a more natural regime of higher frequency, lower intensity wildfires returns. However, restoration has been hampered by the significant cost of restoration and other institutional barriers. To create additional revenue streams to pay for restoration, the National Forest Foundation supported the development of a methodology for the estimation and verification of carbon offsets generated by the restoration of ponderosa pine forests in northern Arizona. The methodology was submitted to the American Carbon Registry, a prominent carbon registry, but it was ultimately rejected. This paper presents a post-mortem examination of that methodology and the reasons it was rejected in order to improve the development of similar methodologies in the future. Using a mixed-methods approach, this paper analyzes the potential atmospheric carbon benefits of the proposed carbon offset methodology and the public and peer-reviewed comments from the associated review of the methodology. Results suggest a misalignment between the priorities of carbon registries and the context-specific ecosystem service benefits of this type of restoration; although findings confirm the potential for reductions in released carbon due to restoration, these results illuminate barriers that complicate registering these reductions as voluntary carbon offsets under current guidelines and best practices, especially on public land. These barriers include substantial uncertainty about the magnitude and timing of carbon benefits. Overcoming these barriers will require active reflexivity by the institutions that register voluntary carbon offsets and the institutions that manage public lands in the United States. Such reflexivity, or reconsideration of the concepts and purposes of carbon offsets and/or forest restoration, will allow future approaches to better align objectives for successfully registering restoration-based voluntary carbon offsets. Therefore, the results of this analysis can inform the development of future methodologies, policies, and projects with similar goals in the same or different landscapes.


2006 ◽  
Vol 14 (1) ◽  
pp. 4-10 ◽  
Author(s):  
Reed F. Noss ◽  
Paul Beier ◽  
W. Wallace Covington ◽  
R. Edward Grumbine ◽  
David B. Lindenmayer ◽  
...  

2001 ◽  
Vol 31 (7) ◽  
pp. 1205-1226 ◽  
Author(s):  
William L Baker ◽  
Donna Ehle

Present understanding of fire ecology in forests subject to surface fires is based on fire-scar evidence. We present theory and empirical results that suggest that fire-history data have uncertainties and biases when used to estimate the population mean fire interval (FI) or other parameters of the fire regime. First, the population mean FI is difficult to estimate precisely because of unrecorded fires and can only be shown to lie in a broad range. Second, the interval between tree origin and first fire scar estimates a real fire-free interval that warrants inclusion in mean-FI calculations. Finally, inadequate sampling and targeting of multiple-scarred trees and high scar densities bias mean FIs toward shorter intervals. In ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) forests of the western United States, these uncertainties and biases suggest that reported mean FIs of 2-25 years significantly underestimate population mean FIs, which instead may be between 22 and 308 years. We suggest that uncertainty be explicitly stated in fire-history results by bracketing the range of possible population mean FIs. Research and improved methods may narrow the range, but there is no statistical or other method that can eliminate all uncertainty. Longer mean FIs in ponderosa pine forests suggest that (i) surface fire is still important, but less so in maintaining forest structure, and (ii) some dense patches of trees may have occurred in the pre-Euro-American landscape. Creation of low-density forest structure across all parts of ponderosa pine landscapes, particularly in valuable parks and reserves, is not supported by these results.


Nature ◽  
2004 ◽  
Vol 432 (7013) ◽  
pp. 87-90 ◽  
Author(s):  
Jennifer L. Pierce ◽  
Grant A. Meyer ◽  
A. J. Timothy Jull

2004 ◽  
Vol 116 (3) ◽  
pp. 246-251 ◽  
Author(s):  
HEATHER M. SWANSON ◽  
BREANNA KINNEY ◽  
ALEXANDER CRUZ

Sign in / Sign up

Export Citation Format

Share Document