A Self-Tuning PI control system design for the flatness of hot strip in finishing mill processes

2004 ◽  
Vol 18 (3) ◽  
pp. 379-387 ◽  
Author(s):  
Jeong Ju Choi ◽  
Wan Kee Hong ◽  
Jong Shik Kim
2011 ◽  
Vol 128-129 ◽  
pp. 142-145
Author(s):  
Yong Hua Fan ◽  
Xin Li ◽  
Yun Feng Yu

The high altitude airship can not have desired performance to control the altitude rapidly and accurately when the elevator or ancillary air bursa charge or deflation is used only, because the elevator has little efficiency when the velocity is low and auxiliary air bursas charge or deflation control is very slow. It is present a method to design flight control system for a high altitude airship using auxiliary air bursas charge or deflation and elevator combination control. This combination control scheme is that the ancillary air bursa and elevator are also used to control the airship attitude to get large raise velocity and the ancillary air bursa control is used to adjust the airship altitude for suspension. In this paper, a high altitude airship model with compound control of elevator and ancillary air bursa charge and deflation is given firstly. Then the combination controller is designed by using fuzzy self-tuning control. Finally, it has been proved by simulation that the flight control system has desirable performance and the compound control scheme is feasible.


2019 ◽  
Vol 2019.56 (0) ◽  
pp. K021
Author(s):  
Kento NAITO ◽  
Kazuhiko HIRAMOTO ◽  
Takanori SUGIYAMA ◽  
Hiroyuki KOSHIKIZAWA

This paper describes the design of centralized controller for two variable processes. The two variable process structures are somehow different from the single variable processes. This difference is occurred because of interrelations between the variables present in the process. Hence, when a controller is planned for such systems, the relations amid the variables must be taken into consideration. This process is done in decentralized control system design. But decentralized control system works well when the interrelations between the variables are simple. If the interaction is strong, then the centralized control system is preferred since it uses a controller for each pair of input and output variables. The controller used in main diagonal works for improving the servo performance and off diagonal controller reduces the interrelation effect. So the performance is improved by minimizing the interrelation effects. The design process is easy to understand by field engineers working in industries. The simulation results are included in this paper to specify the efficacy of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document