finishing mill
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 17)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 11 (12) ◽  
pp. 5526
Author(s):  
Hyun-Hee Kim ◽  
Sung-Jin Kim ◽  
Sung-Min Yoon ◽  
Yong-Joon Choi ◽  
Min-Cheol Lee

In a hot rolling process, excessive friction between rollers and steel plates may lead to the formation of scratches on the steel plate. To reduce scratch formation in the finishing mill of the hot rolling process, two techniques are proposed in this work: flying touch and velocity synchronization. The proposed flying touch method can reduce the impact of the generated force when the upper roller collides with the steel plate. In addition, the proposed velocity synchronization method can decrease the frictional force resulting from the velocity difference between the rollers and steel plate. The effectiveness of the proposed methods was demonstrated through simulations and experiments using a 1/40 downscaled hot rolling simulator. The simulations and experimental results demonstrate that the proposed methods can reduce the magnitudes of friction and impact forces that lead to scratch formation on the steel plates in the hot rolling process.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2278
Author(s):  
Byungju Park ◽  
Jaehyeong Lee ◽  
Hangkyu Yoo ◽  
Gilsoo Jang

In this study, we mitigated the harmonic voltage in a power system that contained the roughing mill (RM) and finishing mill (FM) motor drives. AC/DC converter type RM drive is a non-linear, large-capacity varying load that adversely affects power quality, e.g., a flicker, voltage distortion, etc. The voltage drop can be compensated within a certain limit by using the proper capacity of a power capacitor bank. In addition, the voltage distortion can be controlled as per the guidelines of IEEE Std. 519 using the passive harmonic filter corresponding to the characteristic harmonics of the motor drive load. The passive harmonic filter can provide an economical solution by mitigating the harmonic distortion with a proper reactive power supply. However, at the planning level, attention should be paid to avoid system overvoltage that is caused by the leading power under light load conditions and also the problem of parallel resonance between the harmonic filter and the step-down transformer. In addition, when designing the filter reactor, the K-factor and peak voltage must be considered; the filter capacitor also requires a dielectric material that considers the harmonic peak voltage. The purpose of this study was to acquire a better understanding of the filter applications as well as verify the field measurement, analysis, and design of harmonic filters together with its performance.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1149
Author(s):  
Mohanraj Nandakumar ◽  
Sankaran Ramalingam ◽  
Subashini Nallusamy ◽  
Shriram Srinivasarangan Rangarajan

This paper proposes the novel idea of eliminating the front-end converters used indirect current (DC) bus voltage variation, thereby allowing for control of the speed of the brushless direct current (BLDC) motors in the two-quadrant operation of a permanent magnet brushless direct current (PMBLDC) motor, which is required for multiple bi-directional hot roughing steel rolling mills. The first phase of steel rolling, the manufacture of plates, strips etc., using hot slabs from the continuous casting stage, is carried out for thickness reduction, before the same is sent to the finishing mill for further mechanical processing. The hot roughing process involves applying high, compressive pressure, using a hydraulically operated mechanism, through a pair of backup rolls and work rolls for rolling. Overall, the processes consist of multiple passes of forward and reverse rolling at increasing roll speeds. The rolling process was modeled, taking into account parameters like roller dimensions, angle and length of contact, and rolling force, at various temperatures, using actual data obtained from a steel mill. From this data, speed and torque profiles at the motor shaft, covering the entire rolling process, were created. A profile-based feedback controller is proposed for setting the six-pulse inverter frequency and parameters of the pulse width modulated (PWM) waveform for current control, based on Hall sensor position, and the same is implemented for closed loop operation of the brushless direct current motor drive system. The performance enhancement of the two different controllers was also evaluated, during the rolling of 1005 hot rolled (HR) steel, and was taken into consideration in the research analysis. The entire process was simulated in the MATLAB/Simulink platform, and the results verify the suitability of an entire-drive system for industrial steel rolling applications.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 758
Author(s):  
José Ángel Barrios ◽  
Gerardo Maximiliano Méndez ◽  
Alberto Cavazos

Entry temperature estimation is a major concern for finishing mill set-up in hot strip mills. Variations in the incoming bar conditions, frequent product changes and measurement uncertainties may cause erroneous estimation, and hence, an incorrect mill set-up causing a faulty bar head-end. In earlier works, several varieties of neuro-fuzzy systems have been tested due to their adaptation capabilities. In order to test the combination of the simplicity offered by Takagi–Sugeno–Kang systems (also known as Sugeno systems) and the modeling power of type-2 fuzzy, in this work, hybrid-learning type-2 Sugeno fuzzy systems are evaluated and compared with the results presented earlier. Systems with both empirically and fuzzy c-means-generated rules as well as purely fuzzy systems and grey-box models are tested. Experimental data were collected from a real-life mill; datasets for rule-generation, training, and validation were randomly drawn. Two of the grey-box models presented here reach 100% of bars with 20 °C or less prediction error, while two of the purely fuzzy systems improved performance with respect to purely fuzzy systems presented elsewhere, however it was only a slight improvement.


Sign in / Sign up

Export Citation Format

Share Document