Computation of a (canonical) doubly perfect elimination ordering of a doubly chordal graph

1998 ◽  
Vol 5 (2) ◽  
pp. 287-294
Author(s):  
Mahnhoon Lee ◽  
Changhwa Kim
2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Takuro Abe ◽  
Koji Nuida ◽  
Yasuhide Numata

International audience In this article, we propose a generalization of the notion of chordal graphs to signed graphs, which is based on the existence of a perfect elimination ordering for a chordal graph. We give a special kind of filtrations of the generalized chordal graphs, and show a characterization of those graphs. Moreover, we also describe a relation between signed graphs and a certain class of multiarrangements of hyperplanes, and show a characterization of free multiarrangements in that class in terms of the generalized chordal graphs, which generalizes a well-known result by Stanley on free hyperplane arrangements. Finally, we give a remark on a relation of our results with a recent conjecture by Athanasiadis on freeness characterization for another class of hyperplane arrangements. Dans cet article, nous proposons une généralisation de la notion des graphes triangulés à graphes signés, qui est basée sur l'existence d'un ordre d'élimination simplicial à un graphe triangulé. Nous donnons un genre spécial de filtrations des graphes triangulés généralisés, et montrons une caractérisation de ces graphes. De plus, nous décrivons aussi une relation entre graphes signés et une certaine classe de multicompositions d'hyperplans, et montrons une caractérisation de multicompositions libres dans cette classe en termes des graphes triangulés généralisés, qui généralise un résultat célèbre de Stanley sur compositions libres d'hyperplans. Finalement, nous donnons une remarque sur une relation de nos résultats avec une conjecture récente d'Athanasiadis sur une caractérisation du freeness d'une autre classe de compositions d'hyperplans.


2005 ◽  
Vol 82 (3) ◽  
pp. 275-288 ◽  
Author(s):  
Xijuan Guo ◽  
Huiping Yao ◽  
Fang Cheng
Keyword(s):  

2013 ◽  
Vol 438 (10) ◽  
pp. 3804-3816 ◽  
Author(s):  
Naomi Shaked-Monderer
Keyword(s):  

Author(s):  
Topi Talvitie ◽  
Mikko Koivisto

Exploring directed acyclic graphs (DAGs) in a Markov equivalence class is pivotal to infer causal effects or to discover the causal DAG via appropriate interventional data. We consider counting and uniform sampling of DAGs that are Markov equivalent to a given DAG. These problems efficiently reduce to counting the moral acyclic orientations of a given undirected connected chordal graph on n vertices, for which we give two algorithms. Our first algorithm requires O(2nn4) arithmetic operations, improving a previous superexponential upper bound. The second requires O(k!2kk2n) operations, where k is the size of the largest clique in the graph; for bounded-degree graphs this bound is linear in n. After a single run, both algorithms enable uniform sampling from the equivalence class at a computational cost linear in the graph size. Empirical results indicate that our algorithms are superior to previously presented algorithms over a range of inputs; graphs with hundreds of vertices and thousands of edges are processed in a second on a desktop computer.


2019 ◽  
Vol 23 (2) ◽  
pp. 167-190
Author(s):  
Jean Cardinal ◽  
Jean-Paul Doignon ◽  
Keno Merckx

2011 ◽  
Vol 39 (10) ◽  
pp. 3753-3764 ◽  
Author(s):  
Fatemeh Mohammadi
Keyword(s):  

Author(s):  
Mehmet Akif Yetim

We provide upper bounds on the chromatic number of the square of graphs, which have vertex ordering characterizations. We prove that [Formula: see text] is [Formula: see text]-colorable when [Formula: see text] is a cocomparability graph, [Formula: see text]-colorable when [Formula: see text] is a strongly orderable graph and [Formula: see text]-colorable when [Formula: see text] is a dually chordal graph, where [Formula: see text] is the maximum degree and [Formula: see text] = max[Formula: see text] is the multiplicity of the graph [Formula: see text]. This improves the currently known upper bounds on the chromatic number of squares of graphs from these classes.


Sign in / Sign up

Export Citation Format

Share Document