scholarly journals Classical negation in logic programs and disjunctive databases

1991 ◽  
Vol 9 (3-4) ◽  
pp. 365-385 ◽  
Author(s):  
Michael Gelfond ◽  
Vladimir Lifschitz
2011 ◽  
Vol 12 (6) ◽  
pp. 843-887 ◽  
Author(s):  
ÉRIC A. MARTIN

AbstractLogic programming has developed as a rich field, built over a logical substratum whose main constituent is a nonclassical form of negation, sometimes coexisting with classical negation. The field has seen the advent of a number of alternative semantics, with Kripke–Kleene semantics, the well-founded semantics, the stable model semantics, and the answer-set semantics standing out as the most successful. We show that all aforementioned semantics are particular cases of a generic semantics, in a framework where classical negation is the unique form of negation and where the literals in the bodies of the rules can be ‘marked’ to indicate that they can be the targets of hypotheses. A particular semantics then amounts to choosing a particular marking scheme and choosing a particular set of hypotheses. When a literal belongs to the chosen set of hypotheses, all marked occurrences of that literal in the body of a rule are assumed to be true, whereas the occurrences of that literal that have not been marked in the body of the rule are to be derived in order to contribute to the firing of the rule. Hence the notion of hypothetical reasoning that is presented in this framework is not based on making global assumptions, but more subtly on making local, contextual assumptions, taking effect as indicated by the chosen marking scheme on the basis of the chosen set of hypotheses. Our approach offers a unified view on the various semantics proposed in logic programming, classical in that only classical negation is used, and links the semantics of logic programs to mechanisms that endow rule-based systems with the power to harness hypothetical reasoning.


2006 ◽  
Vol 6 (1-2) ◽  
pp. 107-167 ◽  
Author(s):  
DAVY VAN NIEUWENBORGH ◽  
DIRK VERMEIR

We extend answer set semantics to deal with inconsistent programs (containing classical negation), by finding a “best” answer set. Within the context of inconsistent programs, it is natural to have a partial order on rules, representing a preference for satisfying certain rules, possibly at the cost of violating less important ones. We show that such a rule order induces a natural order on extended answer sets, the minimal elements of which we call preferred answer sets. We characterize the expressiveness of the resulting semantics and show that it can simulate negation as failure, disjunction and some other formalisms such as logic programs with ordered disjunction. The approach is shown to be useful in several application areas, e.g. repairing database, where minimal repairs correspond to preferred answer sets.


1990 ◽  
Author(s):  
Chitta Baral ◽  
Jorge Lobo ◽  
Jack Minker
Keyword(s):  

1987 ◽  
Vol 10 (1) ◽  
pp. 1-33
Author(s):  
Egon Börger ◽  
Ulrich Löwen

We survey and give new results on logical characterizations of complexity classes in terms of the computational complexity of decision problems of various classes of logical formulas. There are two main approaches to obtain such results: The first approach yields logical descriptions of complexity classes by semantic restrictions (to e.g. finite structures) together with syntactic enrichment of logic by new expressive means (like e.g. fixed point operators). The second approach characterizes complexity classes by (the decision problem of) classes of formulas determined by purely syntactic restrictions on the formation of formulas.


1990 ◽  
Vol 13 (4) ◽  
pp. 465-483
Author(s):  
V.S. Subrahmanian

Large logic programs are normally designed by teams of individuals, each of whom designs a subprogram. While each of these subprograms may have consistent completions, the logic program obtained by taking the union of these subprograms may not. However, the resulting program still serves a useful purpose, for a (possibly) very large subset of it still has a consistent completion. We argue that “small” inconsistencies may cause a logic program to have no models (in the traditional sense), even though it still serves some useful purpose. A semantics is developed in this paper for general logic programs which ascribes a very reasonable meaning to general logic programs irrespective of whether they have consistent (in the classical logic sense) completions.


2002 ◽  
Vol 37 (3) ◽  
pp. 63-74
Author(s):  
Lunjin Lu

2018 ◽  
Vol 19 (2) ◽  
pp. 1-42
Author(s):  
Sebastian Binnewies ◽  
Zhiqiang Zhuang ◽  
Kewen Wang ◽  
Bela Stantic
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document