answer set semantics
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
Mark Law ◽  
Alessandra Russo ◽  
Krysia Broda ◽  
Elisa Bertino

Recently, novel ILP systems under the answer set semantics have been proposed, some of which are robust to noise and scalable over large hypothesis spaces. One such system is FastLAS, which is significantly faster than other state-of-the-art ASP-based ILP systems. FastLAS is, however, only capable of Observational Predicate Learning (OPL), where the learned hypothesis defines predicates that are directly observed in the examples. It cannot learn knowledge that is indirectly observable, such as learning causes of observed events. This class of problems, known as non-OPL, is known to be difficult to handle in the context of non-monotonic semantics. Solving non-OPL learning tasks whilst preserving scalability is a challenging open problem. We address this problem with a new abductive method for translating examples of a non-OPL task to a set of examples, called possibilities, such that the original example is covered iff at least one of the possibilities is covered. This new method allows an ILP system capable of performing OPL tasks to be "upgraded" to solve non-OPL tasks. In particular, we present our new FastNonOPL system, which upgrades FastLAS with the new possibility generation. We compare it to other state-of-the-art ASP-based ILP systems capable of solving non-OPL tasks, showing that FastNonOPL is significantly faster, and in many cases more accurate, than these other systems.



2021 ◽  
Author(s):  
Daniele Meli ◽  
Mohan Sridharan ◽  
Paolo Fiorini

AbstractThe quality of robot-assisted surgery can be improved and the use of hospital resources can be optimized by enhancing autonomy and reliability in the robot’s operation. Logic programming is a good choice for task planning in robot-assisted surgery because it supports reliable reasoning with domain knowledge and increases transparency in the decision making. However, prior knowledge of the task and the domain is typically incomplete, and it often needs to be refined from executions of the surgical task(s) under consideration to avoid sub-optimal performance. In this paper, we investigate the applicability of inductive logic programming for learning previously unknown axioms governing domain dynamics. We do so under answer set semantics for a benchmark surgical training task, the ring transfer. We extend our previous work on learning the immediate preconditions of actions and constraints, to also learn axioms encoding arbitrary temporal delays between atoms that are effects of actions under the event calculus formalism. We propose a systematic approach for learning the specifications of a generic robotic task under the answer set semantics, allowing easy knowledge refinement with iterative learning. In the context of 1000 simulated scenarios, we demonstrate the significant improvement in performance obtained with the learned axioms compared with the hand-written ones; specifically, the learned axioms address some critical issues related to the plan computation time, which is promising for reliable real-time performance during surgery.



Author(s):  
Yi-Dong Shen ◽  
Thomas Eiter

[Gelfond and Lifschitz, 1991] introduced simple disjunctive logic programs and defined the answer set semantics called GL-semantics. We observed that the requirement of GL-semantics, i.e., an answer set should be a minimal model of the GL-reduct may be too strong and exclude some answer sets that would be reasonably acceptable. To address this, we present a novel and more permissive semantics, called determining inference semantics.



10.29007/pjd4 ◽  
2019 ◽  
Author(s):  
Abdullah Khan ◽  
Loris Bozzato ◽  
Luciano Serafini ◽  
Beatrice Lazzerini

In the context of computer vision, most of the traditional action recognition techniques assign a single label to a video after analyzing the whole video. We believe that under- standing of the visual world is not limited to recognizing a specific action class or individual object instances, but also extends to how those objects interact in the scene, which im- plies recognizing events happening in the scene. In this paper we present an approach for identifying complex events in videos, starting from detection of objects and simple events using a state-of-the-art object detector (YOLO). We provide a logic based representation of events by using a realization of the Event calculus that allows us to define complex events in terms of logical rules. Axioms of the calculus are encoded in a logic program under Answer Set semantics in order to reason and formulate queries over the extracted events. The applicability of the framework is demonstrated over the scenario of recognizing different kinds of kick events in soccer videos.



2019 ◽  
Vol 19 (5-6) ◽  
pp. 688-704
Author(s):  
GIOVANNI AMENDOLA ◽  
FRANCESCO RICCA

AbstractIn the last years, abstract argumentation has met with great success in AI, since it has served to capture several non-monotonic logics for AI. Relations between argumentation framework (AF) semantics and logic programming ones are investigating more and more. In particular, great attention has been given to the well-known stable extensions of an AF, that are closely related to the answer sets of a logic program. However, if a framework admits a small incoherent part, no stable extension can be provided. To overcome this shortcoming, two semantics generalizing stable extensions have been studied, namely semi-stable and stage. In this paper, we show that another perspective is possible on incoherent AFs, called paracoherent extensions, as they have a counterpart in paracoherent answer set semantics. We compare this perspective with semi-stable and stage semantics, by showing that computational costs remain unchanged, and moreover an interesting symmetric behaviour is maintained.



2019 ◽  
Vol 19 (5-6) ◽  
pp. 757-772 ◽  
Author(s):  
GIOVANNI AMENDOLA ◽  
CARMINE DODARO ◽  
FRANCESCO RICCA

AbstractAnswer Set Programming (ASP) is a well-established formalism for logic programming. Problem solving in ASP requires to write an ASP program whose answers sets correspond to solutions. Albeit the non-existence of answer sets for some ASP programs can be considered as a modeling feature, it turns out to be a weakness in many other cases, and especially for query answering. Paracoherent answer set semantics extend the classical semantics of ASP to draw meaningful conclusions also from incoherent programs, with the result of increasing the range of applications of ASP. State of the art implementations of paracoherent ASP adopt the semi-equilibrium semantics, but cannot be lifted straightforwardly to compute efficiently the (better) split semi-equilibrium semantics that discards undesirable semi-equilibrium models. In this paper an efficient evaluation technique for computing a split semi-equilibrium model is presented. An experiment on hard benchmarks shows that better paracoherent answer sets can be computed consuming less computational resources than existing methods.



2019 ◽  
Vol 19 (5-6) ◽  
pp. 957-973
Author(s):  
FRANCESCO CALIMERI ◽  
GIOVAMBATTISTA IANNI ◽  
FRANCESCO PACENZA ◽  
SIMONA PERRI ◽  
JESSICA ZANGARI

AbstractRepeated executions of reasoning tasks for varying inputs are necessary in many applicative settings, such as stream reasoning. In this context, we propose an incremental grounding approach for the answer set semantics. We focus on the possibility of generating incrementally larger ground logic programs equivalent to a given non-ground one; so calledovergrounded programscan be reused in combination with deliberately many different sets of inputs. Updating overgrounded programs requires a small effort, thus making the instantiation of logic programs considerably faster when grounding is repeated on a series of inputs similar to each other. Notably, the proposed approach works “under the hood”, relieving designers of logic programs from controlling technical aspects of grounding engines and answer set systems. In this work we present the theoretical basis of the proposed incremental grounding technique, we illustrate the consequent repeated evaluation strategy and report about our experiments.



Author(s):  
Laurent Garcia ◽  
Claire Lefèvre ◽  
Odile Papini ◽  
Igor Stéphan ◽  
Eric Würbel

Belief base revision has been studied within the answer set programming framework. We go a step further by introducing uncertainty and studying belief base revision when beliefs are represented by possibilistic logic programs under possibilistic answer set semantics and revised by certain input. The paper proposes two approaches of rule-based revision operators and presents their semantic characterization in terms of possibilistic distribution. This semantic characterization allows for equivalently considering the evolution of syntactic logic programs and the evolution of their semantic content. It then studies the logical properties of the proposed operators and gives complexity results.



AI Magazine ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 7-12 ◽  
Author(s):  
Vladimir Lifschitz

Answer set programming is a declarative programming paradigm based on the answer set semantics of logic programs. This introductory article provides the mathematical background for the discussion of answer set programming in other contributions to this special issue.



Sign in / Sign up

Export Citation Format

Share Document