The Picard Group of a compact toric Variety

1992 ◽  
Vol 22 (1-2) ◽  
pp. 509-527 ◽  
Author(s):  
Markus Eikelberg
Keyword(s):  
Author(s):  
Ugo Bruzzo ◽  
William Montoya

AbstractWe establish the Hodge conjecture for some subvarieties of a class of toric varieties. First we study quasi-smooth intersections in a projective simplicial toric variety, which is a suitable notion to generalize smooth complete intersection subvarieties in the toric environment, and in particular quasi-smooth hypersurfaces. We show that under appropriate conditions, the Hodge conjecture holds for a very general quasi-smooth intersection subvariety, generalizing the work on quasi-smooth hypersurfaces of the first author and Grassi in Bruzzo and Grassi (Commun Anal Geom 28: 1773–1786, 2020). We also show that the Hodge Conjecture holds asymptotically for suitable quasi-smooth hypersurface in the Noether–Lefschetz locus, where “asymptotically” means that the degree of the hypersurface is big enough, under the assumption that the ambient variety $${{\mathbb {P}}}_\Sigma ^{2k+1}$$ P Σ 2 k + 1 has Picard group $${\mathbb {Z}}$$ Z . This extends to a class of toric varieties Otwinowska’s result in Otwinowska (J Alg Geom 12: 307–320, 2003).


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


2002 ◽  
Vol 30 (12) ◽  
pp. 5771-5779
Author(s):  
T. J. Ford ◽  
R. Stimets
Keyword(s):  

2021 ◽  
Vol 37 (1) ◽  
pp. 95-103
Author(s):  
Da Sheng Wei

Author(s):  
Ugo Bruzzo ◽  
William D. Montoya

AbstractFor a quasi-smooth hypersurface X in a projective simplicial toric variety $$\mathbb {P}_{\Sigma }$$ P Σ , the morphism $$i^*:H^p(\mathbb {P}_{\Sigma })\rightarrow H^p(X)$$ i ∗ : H p ( P Σ ) → H p ( X ) induced by the inclusion is injective for $$p=\dim X$$ p = dim X and an isomorphism for $$p<\dim X-1$$ p < dim X - 1 . This allows one to define the Noether–Lefschetz locus $$\mathrm{NL}_{\beta }$$ NL β as the locus of quasi-smooth hypersurfaces of degree $$\beta $$ β such that $$i^*$$ i ∗ acting on the middle algebraic cohomology is not an isomorphism. We prove that, under some assumptions, if $$\dim \mathbb {P}_{\Sigma }=2k+1$$ dim P Σ = 2 k + 1 and $$k\beta -\beta _0=n\eta $$ k β - β 0 = n η , $$n\in \mathbb {N}$$ n ∈ N , where $$\eta $$ η is the class of a 0-regular ample divisor, and $$\beta _0$$ β 0 is the anticanonical class, every irreducible component V of the Noether–Lefschetz locus quasi-smooth hypersurfaces of degree $$\beta $$ β satisfies the bounds $$n+1\leqslant \mathrm{codim}\,Z \leqslant h^{k-1,\,k+1}(X)$$ n + 1 ⩽ codim Z ⩽ h k - 1 , k + 1 ( X ) .


2019 ◽  
Vol 2019 (753) ◽  
pp. 23-56 ◽  
Author(s):  
Christian Miebach ◽  
Karl Oeljeklaus

AbstractWe systematically study Schottky group actions on homogeneous rational manifolds and find two new families besides those given by Nori’s well-known construction. This yields new examples of non-Kähler compact complex manifolds having free fundamental groups. We then investigate their analytic and geometric invariants such as the Kodaira and algebraic dimension, the Picard group and the deformation theory, thus extending results due to Lárusson and to Seade and Verjovsky. As a byproduct, we see that the Schottky construction allows to recover examples of equivariant compactifications of {{\rm{SL}}(2,\mathbb{C})/\Gamma} for Γ a discrete free loxodromic subgroup of {{\rm{SL}}(2,\mathbb{C})}, previously obtained by A. Guillot.


2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Ivan Arzhantsev ◽  
Ivan Bazhov

AbstractLet X be an affine toric variety. The total coordinates on X provide a canonical presentation $$\bar X \to X$$ of X as a quotient of a vector space $$\bar X$$ by a linear action of a quasitorus. We prove that the orbits of the connected component of the automorphism group Aut(X) on X coincide with the Luna strata defined by the canonical quotient presentation.


2001 ◽  
Vol 163 (1) ◽  
pp. 17-33 ◽  
Author(s):  
H. Fausk ◽  
L.G. Lewis ◽  
J.P. May

2016 ◽  
Vol 20 (6) ◽  
pp. 3133-3217 ◽  
Author(s):  
Akhil Mathew ◽  
Vesna Stojanoska

Sign in / Sign up

Export Citation Format

Share Document