Codimension bounds for the Noether–Lefschetz components for toric varieties
AbstractFor a quasi-smooth hypersurface X in a projective simplicial toric variety $$\mathbb {P}_{\Sigma }$$ P Σ , the morphism $$i^*:H^p(\mathbb {P}_{\Sigma })\rightarrow H^p(X)$$ i ∗ : H p ( P Σ ) → H p ( X ) induced by the inclusion is injective for $$p=\dim X$$ p = dim X and an isomorphism for $$p<\dim X-1$$ p < dim X - 1 . This allows one to define the Noether–Lefschetz locus $$\mathrm{NL}_{\beta }$$ NL β as the locus of quasi-smooth hypersurfaces of degree $$\beta $$ β such that $$i^*$$ i ∗ acting on the middle algebraic cohomology is not an isomorphism. We prove that, under some assumptions, if $$\dim \mathbb {P}_{\Sigma }=2k+1$$ dim P Σ = 2 k + 1 and $$k\beta -\beta _0=n\eta $$ k β - β 0 = n η , $$n\in \mathbb {N}$$ n ∈ N , where $$\eta $$ η is the class of a 0-regular ample divisor, and $$\beta _0$$ β 0 is the anticanonical class, every irreducible component V of the Noether–Lefschetz locus quasi-smooth hypersurfaces of degree $$\beta $$ β satisfies the bounds $$n+1\leqslant \mathrm{codim}\,Z \leqslant h^{k-1,\,k+1}(X)$$ n + 1 ⩽ codim Z ⩽ h k - 1 , k + 1 ( X ) .