Virtual partitioning by dynamic priorities: Fair and efficient resource-sharing by several services

Author(s):  
Debasis Mitra ◽  
Ilze Ziedins
Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1177
Author(s):  
Natalia Yarkina ◽  
Yuliya Gaidamaka ◽  
Luis M. Correia ◽  
Konstantin Samouylov

Network slicing is a novel key technology in 5G networks which permits to provide a multitude of heterogeneous communication services over a common network infrastructure while satisfying strict Quality of Service (QoS) requirements. Since radio spectrum resources are inherently scarce, the slicing of the radio access network should rely on a flexible resource sharing policy that provides efficient resource usage, fairness and slice isolation. In this article, we propose such a policy for bandwidth-greedy communication services. The policy implies a convex programming problem and is formalized to allow for session-level stochastic modeling. We developed a multi-class service system with service rates obtained as a solution to the optimization problem, a Markovian Arrival Process and state-dependent preemptive priorities. We use matrix-analytic methods to find the steady state distribution of the resulting continuous-time Markov chain and the expressions for important performance metrics, such as data rates. Numerical analysis illustrates the efficiency of the proposed slicing scheme compared to the complete sharing and complete partitioning policies, showing that our approach leads to a data rate about the double of that obtained under complete partitioning for the analyzed scenario.


VLSI Design ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
T. Suresh ◽  
K. L. Shunmuganathan

The Fourth Generation (4G) network is expected to serve mobile subscribers under dynamic network conditions and offer any type service: anytime, anywhere, and anyhow. Two such technologies that can respond to the above said services are Wideband Code Division Multiple Access (WCDMA) and Orthogonal Frequency Division Multiplexing (OFDM). The main contribution of this paper is to propose a dedicated hardware module which can reconfigure itself either to the OFDM Wireless LAN or WCDMA standard. In this paper, Fast Fourier Transform (FFT) algorithm is implemented for OFDM standard, and rake receiver is implemented for WCDMA standard. Initially efficient implementations of these two algorithms are tested separately and identified the resources utilized by them. Then the new hardware architecture, which configures to any one of these two standards on demand, is proposed. This architecture efficiently shares the resources needed for these two standards. The proposed architecture is simulated using ModelSimSE v6.5 and mapped onto a virtex 5 FPGA device (xc5v1x30ff324) using the tool Xilinx ISE 9.2i, and the results are compared with the standard approach. These results show that the proposed hardware architecture utilizes less number of resources compared to the conventional Reconfigurable Receiver Architecture System.


Sign in / Sign up

Export Citation Format

Share Document