scholarly journals Computing stable and partial stable models of extended disjunctive logic programs

Author(s):  
Carolina Ruiz ◽  
Jack Minker
2016 ◽  
Vol 16 (5-6) ◽  
pp. 587-603 ◽  
Author(s):  
PEDRO CABALAR ◽  
JORGE FANDINNO

AbstractIn this paper, we study an extension of the stable model semantics for disjunctive logic programs where each true atom in a model is associated with an algebraic expression (in terms of rule labels) that represents its justifications. As in our previous work for non-disjunctive programs, these justifications are obtained in a purely semantic way, by algebraic operations (product, addition and application) on a lattice of causal values. Our new definition extends the concept ofcausal stable modelto disjunctive logic programs and satisfies that each (standard) stable model corresponds to a disjoint class of causal stable models sharing the same truth assignments, but possibly varying the obtained explanations. We provide a pair of illustrative examples showing the behaviour of the new semantics and discuss the need of introducing a new type of rule, which we callcausal-choice. This type of rule intuitively captures the idea of “Amay causeB” and, when causal information is disregarded, amounts to a usual choice rule under the standard stable model semantics.


2013 ◽  
Vol 13 (4-5) ◽  
pp. 563-578 ◽  
Author(s):  
JIA-HUAI YOU ◽  
HENG ZHANG ◽  
YAN ZHANG

AbstractWe consider disjunctive logic programs without function symbols but with existential quantification in rule heads, under the semantics of general stable models. There are at least two interesting prospects in these programs. The first is that a program can be made more succinct by using existential variables, and the second is on the potential in representing defeasible ontological knowledge by these logic programs. This paper studies some of the properties of these programs. First, we show a simple yet intuitive definition of stable models for these programs that does not resort to second-order logic. Second, the stable models of these programs can be characterized by an extension of progression for disjunctive programs, which provides a native characterization of justification for stable models. We then study the decidability issue. While the stable model existence problem for safe disjunctive programs is decidable, with existential quantification allowed in rule heads the problem becomes undecidable. We identify an interesting decidable fragment by exploring a new notion of stratification over existential quantification.


2009 ◽  
Vol 9 (4) ◽  
pp. 529-564 ◽  
Author(s):  
YI-DONG SHEN ◽  
JIA-HUAI YOU ◽  
LI-YAN YUAN

AbstractThis paper studies the stable model semantics of logic programs with (abstract) constraint atoms and their properties. We introduce a succinct abstract representation of these constraint atoms in which a constraint atom is represented compactly. We show two applications. First, under this representation of constraint atoms, we generalize the Gelfond–Lifschitz transformation and apply it to define stable models (also called answer sets) for logic programs with arbitrary constraint atoms. The resulting semantics turns out to coincide with the one defined by Son et al. (2007), which is based on a fixpoint approach. One advantage of our approach is that it can be applied, in a natural way, to define stable models for disjunctive logic programs with constraint atoms, which may appear in the disjunctive head as well as in the body of a rule. As a result, our approach to the stable model semantics for logic programs with constraint atoms generalizes a number of previous approaches. Second, we show that our abstract representation of constraint atoms provides a means to characterize dependencies of atoms in a program with constraint atoms, so that some standard characterizations and properties relying on these dependencies in the past for logic programs with ordinary atoms can be extended to logic programs with constraint atoms.


1990 ◽  
Vol 13 (4) ◽  
pp. 445-463
Author(s):  
Teodor Przymusinski

We introduce 3-valued stable models which are a natural generalization of standard (2-valued) stable models. We show that every logic program P has at least one 3-valued stable model and that the well-founded model of any program P [Van Gelder et al., 1990] coincides with the smallest 3-valued stable model of P. We conclude that the well-founded semantics of an arbitrary logic program coincides with the 3-valued stable model semantics. The 3-valued stable semantics is closely related to non-monotonic formalisms in AI. Namely, every program P can be translated into a suitable autoepistemic (resp. default) theory P ˆ so that the 3-valued stable semantics of P coincides with the (3-valued) autoepistemic (resp. default) semantics of P ˆ. Similar results hold for circumscription and CWA. Moreover, it can be shown that the 3-valued stable semantics has a natural extension to the class of all disjunctive logic programs and deductive databases. Finally, following upon the recent approach developed by Gelfond and Lifschitz, we extend all of our results to more general logic programs which, in addition to the use of negation as failure, permit the use of classical negation.


Sign in / Sign up

Export Citation Format

Share Document