Limit theorems for storage process with the domain of attraction of a stable law

Author(s):  
Keigo Yamada
1973 ◽  
Vol 16 (2) ◽  
pp. 173-177 ◽  
Author(s):  
D. R. Beuerman

Let Xl,X2,X3, … be a sequence of independent and identically distributed (i.i.d.) random variables which belong to the domain of attraction of a stable law of index α≠1. That is,1whereandwhere L(n) is a function of slow variation; also take S0=0, B0=l.In §2, we are concerned with the weak convergence of the partial sum process to a stable process and the question of centering for stable laws and drift for stable processes.


Author(s):  
Yuri Kondratiev ◽  
Yuliya Mishura ◽  
Georgiy Shevchenko

Abstract For a continuous-time random walk X = {X t , t ⩾ 0} (in general non-Markov), we study the asymptotic behaviour, as t → ∞, of the normalized additive functional $c_t\int _0^{t} f(X_s)\,{\rm d}s$ , t⩾ 0. Similarly to the Markov situation, assuming that the distribution of jumps of X belongs to the domain of attraction to α-stable law with α > 1, we establish the convergence to the local time at zero of an α-stable Lévy motion. We further study a situation where X is delayed by a random environment given by the Poisson shot-noise potential: $\Lambda (x,\gamma )= {\rm e}^{-\sum _{y\in \gamma } \phi (x-y)},$ where $\phi \colon \mathbb R\to [0,\infty )$ is a bounded function decaying sufficiently fast, and γ is a homogeneous Poisson point process, independent of X. We find that in this case the weak limit has both ‘quenched’ component depending on Λ, and a component, where Λ is ‘averaged’.


1988 ◽  
Vol 25 (01) ◽  
pp. 220-223 ◽  
Author(s):  
Kevin K. Anderson

A shock model in which the time intervals between shocks are in the domain of attraction of a stable law of order less than 1 or relatively stable is considered. Weak limit theorems are established for the cumulative magnitude of the shocks and the first time the cumulative magnitude exceeds z without any assumption on the dependence between the intershock interval and shock magnitude.


2001 ◽  
Vol 01 (02) ◽  
pp. 193-237 ◽  
Author(s):  
JON AARONSON ◽  
MANFRED DENKER

We introduce Gibbs–Markov maps T as maps with a (possibly countable) Markov partition and a certain type of bounded distortion property, and investigate its Frobenius–Perron operator P acting on (locally) Lipschitz continuous functions ϕ. If such a function ϕ belongs to the domain of attraction of a stable law of order in (0,2), we derive the expansion of the eigenvalue function t↦λ(t) of the characteristic function operators Ptf=Pf exp [i< t,ϕ> (perturbations of P) around 0. From this representation local and distributional limit theorems for partial sums ϕ+…+ϕ◦ Tn are easily obtained, provided ϕ is aperiodic. Applications to recurrence properties of group extensions are also given.


1988 ◽  
Vol 25 (1) ◽  
pp. 220-223 ◽  
Author(s):  
Kevin K. Anderson

A shock model in which the time intervals between shocks are in the domain of attraction of a stable law of order less than 1 or relatively stable is considered. Weak limit theorems are established for the cumulative magnitude of the shocks and the first time the cumulative magnitude exceeds z without any assumption on the dependence between the intershock interval and shock magnitude.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Wensheng Wang ◽  
Anwei Zhu

Let X={Xi,i≥1} be a sequence of real valued random variables, S0=0 and Sk=∑i=1kXi  (k≥1). Let σ={σ(x),x∈Z} be a sequence of real valued random variables which are independent of X’s. Denote by Kn=∑k=0nσ(⌊Sk⌋)  (n≥0) Kesten-Spitzer random walk in random scenery, where ⌊a⌋ means the unique integer satisfying ⌊a⌋≤a<⌊a⌋+1. It is assumed that σ’s belong to the domain of attraction of a stable law with index 0<β<2. In this paper, by employing conditional argument, we investigate large deviation inequalities, some sufficient conditions for Chover-type laws of the iterated logarithm and the cluster set for random walk in random scenery Kn. The obtained results supplement to some corresponding results in the literature.


1969 ◽  
Vol 6 (2) ◽  
pp. 419-429 ◽  
Author(s):  
C.C. Heyde

Let Xi, i = 1, 2, 3, … be a sequence of independent and identically distributed random variables which belong to the domain of attraction of a stable law of index a. Write S0= 0, Sn = Σ i=1nXi, n ≧ 1, and Mn = max0 ≦ k ≦ nSk. In the case where the Xi are such that Σ1∞n−1Pr(Sn > 0) < ∞, we have limn→∞Mn = M which is finite with probability one, while in the case where Σ1∞n−1Pr(Sn < 0) < ∞, a limit theorem for Mn has been obtained by Heyde [9]. The techniques used in [9], however, break down in the case Σ1∞n−1Pr(Sn < 0) < ∞, Σ1∞n−1Pr(Sn > 0) < ∞ (the case of oscillation of the random walk generated by the Sn) and the only results available deal with the case α = 2 (Erdos and Kac [5]) and the case where the Xi themselves have a symmetric stable distribution (Darling [4]). In this paper we obtain a general limit theorem for Mn in the case of oscillation.


Sign in / Sign up

Export Citation Format

Share Document