scholarly journals Computing discrete logarithms with quadratic number rings

Author(s):  
Damian Weber
2012 ◽  
Vol 6 (1) ◽  
pp. 1-20
Author(s):  
Robert P. Gallant
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
David Burns ◽  
Rob de Jeu ◽  
Herbert Gangl ◽  
Alexander D. Rahm ◽  
Dan Yasaki

Abstract We develop methods for constructing explicit generators, modulo torsion, of the $K_3$ -groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic $3$ -space or on direct calculations in suitable pre-Bloch groups and lead to the very first proven examples of explicit generators, modulo torsion, of any infinite $K_3$ -group of a number field. As part of this approach, we make several improvements to the theory of Bloch groups for $ K_3 $ of any field, predict the precise power of $2$ that should occur in the Lichtenbaum conjecture at $ -1 $ and prove that this prediction is valid for all abelian number fields.


1992 ◽  
Vol 3 (1) ◽  
pp. 75-78 ◽  
Author(s):  
G. Meletiou ◽  
Gary L. Mullen

2009 ◽  
Vol 18 (5) ◽  
pp. 691-705 ◽  
Author(s):  
GYÖRGY ELEKES ◽  
MIKLÓS SIMONOVITS ◽  
ENDRE SZABÓ

We give a very general sufficient condition for a one-parameter family of curves not to have n members with ‘too many’ (i.e., a near-quadratic number of) triple points of intersections. As a special case, a combinatorial distinction between straight lines and unit circles will be shown. (Actually, this is more than just a simple application; originally this motivated our results.)


Sign in / Sign up

Export Citation Format

Share Document