Limit theorems for sojourns of stochastic processes

Author(s):  
Simeon M. Berman
1989 ◽  
Vol 21 (02) ◽  
pp. 451-469 ◽  
Author(s):  
Zhang Hanqin ◽  
Wang Rongxin

The queueing system considered in this paper consists of r independent arrival channels and s independent service channels, where, as usual, the arrival and service channels are independent. In the queueing system, each server of the system has his own queue and arriving customers join the shortest line in the system. We give functional central limit theorems for the stochastic processes characterizing this system after appropriately scaling and translating the processes in traffic intensity ρ > 1.


1970 ◽  
Vol 2 (02) ◽  
pp. 355-369 ◽  
Author(s):  
Donald L. Iglehart ◽  
Ward Whitt

This paper is a sequel to [7], in which heavy traffic limit theorems were proved for various stochastic processes arising in a single queueing facility with r arrival channels and s service channels. Here we prove similar theorems for sequences of such queueing facilities. The same heavy traffic behavior prevails in many cases in this more general setting, but new heavy traffic behavior is observed when the sequence of traffic intensities associated with the sequence of queueing facilities approaches the critical value (ρ = 1) at appropriate rates.


Sign in / Sign up

Export Citation Format

Share Document