Stochastic flow and lyapunov exponents for abstract stochastic PDEs of parabolic type

Author(s):  
Franco Flandoli
2012 ◽  
Vol 12 (04) ◽  
pp. 1250002 ◽  
Author(s):  
NGUYEN DINH CONG ◽  
NGUYEN THI THE

We introduce a concept of Lyapunov exponents and Lyapunov spectrum of a stochastic differential algebraic equation (SDAE) of index-1. The Lyapunov exponents are defined samplewise via the induced two-parameter stochastic flow generated by inherent regular stochastic differential equations. We prove that Lyapunov exponents are nonrandom.


2002 ◽  
Vol 02 (01) ◽  
pp. 1-23 ◽  
Author(s):  
MING LIAO

Let ϕt be a Lévy process in a semisimple Lie group G of noncompact type regarded as a stochastic flow on a homogeneous space of G, called a G-flow. We will determine the Lyapunov exponents and the stable manifolds of ϕt, and the stationary points of an associated vector field. As examples, SL (d,R)-flows and SO (1,d)-flows on SO (d) and Sd - 1 are discussed in details.


2017 ◽  
Vol 38 (5) ◽  
pp. 1857-1875 ◽  
Author(s):  
JULIAN NEWMAN

For a composition of independent and identically distributed random maps or a memoryless stochastic flow on a compact space$X$, we find conditions under which the presence of locally asymptotically stable trajectories (e.g. as given by negative Lyapunov exponents) implies almost-sure mutual convergence of any given pair of trajectories (‘synchronization’). Namely, we find that synchronization occurs and is ‘stable’ if and only if the system exhibits the following properties: (i) there is asmallestnon-empty invariant set$K\subset X$; (ii) any two points in$K$are capable of being moved closer together; and (iii) $K$admits asymptotically stable trajectories.


Author(s):  
Arkady Pikovsky ◽  
Antonio Politi
Keyword(s):  

1988 ◽  
Vol 53 (6) ◽  
pp. 1181-1197
Author(s):  
Vladimír Kudrna

The paper presents alternative forms of partial differential equations of the parabolic type used in chemical engineering for description of heat and mass transfer. It points at the substantial difference between the classic form of the equations, following from the differential balances of mass and enthalpy, and the form following from the concept of stochastic motion of particles of mass or energy component. Examples are presented of the processes that may be described by the latter method. The paper also reviews the cases when the two approaches become identical.


2008 ◽  
Vol 18 (12) ◽  
pp. 3679-3687 ◽  
Author(s):  
AYDIN A. CECEN ◽  
CAHIT ERKAL

We present a critical remark on the pitfalls of calculating the correlation dimension and the largest Lyapunov exponent from time series data when trend and periodicity exist. We consider a special case where a time series Zi can be expressed as the sum of two subsystems so that Zi = Xi + Yi and at least one of the subsystems is deterministic. We show that if the trend and periodicity are not properly removed, correlation dimension and Lyapunov exponent estimations yield misleading results, which can severely compromise the results of diagnostic tests and model identification. We also establish an analytic relationship between the largest Lyapunov exponents of the subsystems and that of the whole system. In addition, the impact of a periodic parameter perturbation on the Lyapunov exponent for the logistic map and the Lorenz system is discussed.


Sign in / Sign up

Export Citation Format

Share Document