Differential subordination of harmonic functions and martingales

Author(s):  
Donald L. Burkholder
2020 ◽  
Vol 64 (10) ◽  
pp. 9-19
Author(s):  
V. V. Volchkov ◽  
Vit. V. Volchkov

2005 ◽  
Vol 11 (4) ◽  
pp. 517-525
Author(s):  
Juris Steprāns

AbstractIt is shown to be consistent with set theory that every set of reals of size ℵ1 is null yet there are ℵ1 planes in Euclidean 3-space whose union is not null. Similar results will be obtained for other geometric objects. The proof relies on results from harmonic analysis about the boundedness of certain harmonic functions and a measure theoretic pigeonhole principle.


1975 ◽  
Vol 56 ◽  
pp. 1-5
Author(s):  
Masaru Hara

Given a harmonic function u on a Riemann surface R, we define a period functionfor every one-dimensional cycle γ of the Riemann surface R. Γx(R) denote the totality of period functions Γu such that harmonic functions u satisfy a boundedness property X. As for X, we let B stand for boundedness, and D for the finiteness of the Dirichlet integral.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 160
Author(s):  
Likai Liu ◽  
Jin-Lin Liu

Using differential subordination, we consider conditions of β so that some multivalent analytic functions are subordinate to (1+z)γ (0<γ≤1). Notably, these results are applied to derive sufficient conditions for f∈A to satisfy the condition zf′(z)f(z)2−1<1. Several previous results are extended.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 966
Author(s):  
Anna Dobosz ◽  
Piotr Jastrzębski ◽  
Adam Lecko

In this paper we study a certain differential subordination related to the harmonic mean and its symmetry properties, in the case where a dominant is a linear function. In addition to the known general results for the differential subordinations of the harmonic mean in which the dominant was any convex function, one can study such differential subordinations for the selected convex function. In this case, a reasonable and difficult issue is to look for the best dominant or one that is close to it. This paper is devoted to this issue, in which the dominant is a linear function, and the differential subordination of the harmonic mean is a generalization of the Briot–Bouquet differential subordination.


Sign in / Sign up

Export Citation Format

Share Document