Weak convergence under contiguous alternatives of the empirical process when parameters are estimated: The Dk approach

Author(s):  
G. Neuhaus
1973 ◽  
Vol 73 (1) ◽  
pp. 139-144 ◽  
Author(s):  
Pranab Kumar Sen

AbstractBy the use of a semi-martingale property of the Kolmogorov supremum, the results of Pyke (6) on the weak convergence of the empirical process with random sample size are simplified and extended to the case of p(≥1)-dimensional stochastic vectors.


1978 ◽  
Vol 83 (2) ◽  
pp. 269-272 ◽  
Author(s):  
R. M. Loynes

1. Summary and introductionIn (5) a weak convergence result for U-statistics was obtained as a special case of a reverse martingale theorem; in (7) Miller and Sen obtained another such result for U-statistics by a direct argument. As they stand these results are not very closely connected, since one is concerned with U-statistics Uk for k ≥ n, while the other deals with Uk for k ≤ n, but if one instead thinks of k as unrestricted and transforms the random functions Xn which enter into one of these results into new functions Yn by setting Yn(t) = tXn(t−1) one finds that the Yn are (aside from variations in interpolated values) just the functions with which the other result is concerned. As the limiting Wiener process W is well-known to have the property that tW(t−1) is another Wiener process it is not too surprising that both results should hold, and part of the purpose of this paper is to provide a general framework within which the relationship between these results will become clear. A second purpose is to illustrate the simplification that the martingale property brings to weak convergence studies; this is shown both in the U-statistic example and in a new proof of the convergence of the empirical process.


1997 ◽  
Vol 29 (1) ◽  
pp. 271-293 ◽  
Author(s):  
Sidney Resnick ◽  
Cătălin Stărică

For sequences of i.i.d. random variables whose common tail 1 – F is regularly varying at infinity wtih an unknown index –α < 0, it is well known that the Hill estimator is consistent for α–1 and usually asymptotically normally distributed. However, because the Hill estimator is a function of k = k(n), the number of upper order statistics used and which is only subject to the conditions k →∞, k/n → 0, its use in practice is problematic since there are few reliable guidelines about how to choose k. The purpose of this paper is to make the use of the Hill estimator more reliable through an averaging technique which reduces the asymptotic variance. As a direct result the range in which the smoothed estimator varies as a function of k decreases and the successful use of the esimator is made less dependent on the choice of k. A tail empirical process approach is used to prove the weak convergence of a process closely related to the Hill estimator. The smoothed version of the Hill estimator is a functional of the tail empirical process.


Sign in / Sign up

Export Citation Format

Share Document