A study of the torsion-free part of the cokernel from the operator $$\frac{\partial }{{\partial x_n }}$$ acting on a D n-module

Author(s):  
Arno Van Den Essen
Keyword(s):  
2020 ◽  
Vol 66 (1) ◽  
pp. 20-36
Author(s):  
Lorna Gregory ◽  
Sonia L'Innocente ◽  
Carlo Toffalori

2010 ◽  
Vol 53 (1) ◽  
pp. 83-95 ◽  
Author(s):  
Jon F. Carlson ◽  
David J. Hemmer ◽  
Nadia Mazza

AbstractWe complete a classification of the groups of endotrivial modules for the modular group algebras of symmetric groups and alternating groups. We show that, for n ≥ p2, the torsion subgroup of the group of endotrivial modules for the symmetric groups is generated by the sign representation. The torsion subgroup is trivial for the alternating groups. The torsion-free part of the group is free abelian of rank 1 if n ≥ p2 + p and has rank 2 if p2 ≤ n < p2 + p. This completes the work begun earlier by Carlson, Mazza and Nakano.


2011 ◽  
Vol 215 (8) ◽  
pp. 1791-1804 ◽  
Author(s):  
Gena Puninski ◽  
Carlo Toffalori

Author(s):  
Xin Li

AbstractWe study the K-theory of ring C*-algebras associated to rings of integers in global function fields with only a single infinite place. First, we compute the torsion-free part of the K-groups of these ring C*-algebras. Secondly, we show that, under a certain primeness condition, the torsion part of K-theory determines the inertia degrees at infinity of our function fields.


1970 ◽  
Vol 30 ◽  
pp. 32-40
Author(s):  
Sujoy Charaborty ◽  
Akhil Chandra Paul
Keyword(s):  

By introducing the notions of k-homomorphism, anti-k-homomorphism and Jordan khomomorphism of Nobusawa Γ -rings, we establish some significant results related to these concepts. If M1 is a Nobusawa Γ1 -ring and M2 is a 2-torsion free completely prime Nobusawa Γ2 -ring, then we prove that every Jordan k-homomorphism θ of M1 onto M2 such that k(Γ1 ) = Γ2 is either a k-homomorphism or an anti-k-homomorphism. GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 30 (2010) 32-40 DOI: http://dx.doi.org/10.3329/ganit.v30i0.8500  


2019 ◽  
Vol 12 (05) ◽  
pp. 1950079
Author(s):  
Ahmad Al Khalaf ◽  
Iman Taha ◽  
Orest D. Artemovych ◽  
Abdullah Aljouiiee

Earlier D. A. Jordan, C. R. Jordan and D. S. Passman have investigated the properties of Lie rings Der [Formula: see text] of derivations in a commutative differentially prime rings [Formula: see text]. We study Lie rings Der [Formula: see text] in the non-commutative case and prove that if [Formula: see text] is a [Formula: see text]-torsion-free [Formula: see text]-semiprime ring, then [Formula: see text] is a semiprime Lie ring or [Formula: see text] is a commutative ring.


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


Sign in / Sign up

Export Citation Format

Share Document