The coincidence of real and complex interpolation methods for couples of weighted Banach lattices

Author(s):  
Michael Cwikel ◽  
Per Nilsson
2013 ◽  
Vol 318 ◽  
pp. 100-107
Author(s):  
Zhen Shen ◽  
Biao Wang ◽  
Hui Yang ◽  
Yun Zheng

Six kinds of interpolation methods, including projection-shape function method, three-dimensional linear interpolation method, optimal interpolation method, constant volume transformation method and so on, were adoped in the study of interpolation accuracy. From the point of view about the characterization of matching condition of two different grids and interpolation function, the infuencing factor on the interpolation accuracy was studied. The results revealed that different interpolation methods had different interpolation accuracy. The projection-shape function interpolation method had the best effect and the more complex interpolation function had lower accuracy. In many cases, the matching condition of two grids had much greater impact on the interpolation accuracy than the method itself. The error of interpolation method is inevitable, but the error caused by the grid quality could be reduced through efforts.


2014 ◽  
Vol 57 (3) ◽  
pp. 598-608 ◽  
Author(s):  
Yufeng Lu ◽  
Dachun Yang ◽  
Wen Yuan

AbstractIn this article, via the classical complex interpolation method and some interpolation methods traced to Gagliardo, the authors obtain an interpolation theorem for Morrey spaces on quasimetric measure spaces, which generalizes some known results on ℝn.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Nick Lindemulder ◽  
Emiel Lorist

AbstractWe prove a complex formulation of the real interpolation method, showing that the real and complex interpolation methods are not inherently real or complex. Using this complex formulation, we prove Stein interpolation for the real interpolation method. We apply this theorem to interpolate weighted $$L^p$$ L p -spaces and the sectoriality of closed operators with the real interpolation method.


2020 ◽  
Vol 100 (4) ◽  
pp. 33-42
Author(s):  
K.A. Bekmaganbetov ◽  
◽  
K.Ye. Kervenev ◽  
Ye. Toleugazy ◽  
◽  
...  

In this paper we study the interpolation properties of Nikol’skii-Besov spaces with a dominant mixed derivative and mixed metric with respect to anisotropic and complex interpolation methods. An interpolation theorem is proved for a weighted discrete space of vector-valued sequences l^α_q(A). It is shown that the Nikol’skii-Besov space under study is a retract of the space l^α_q(Lp). Based on the above results, interpolation theorems were obtained for Nikol’skii-Besov spaces with the dominant mixed derivative and mixed metric.


1980 ◽  
Vol 32 (6) ◽  
pp. 1482-1500 ◽  
Author(s):  
Shlomo Reisner

We investigate here classes of operators T between Banach spaces E and F, which have factorization of the formwhere L is a Banach lattice, V is a p-convex operator, U is a q-concave operator (definitions below) and jF is the cannonical embedding of F in F”. We show that for fixed p, q this class forms a perfect normed ideal of operators Mp, q, generalizing the ideal Ip,q of [5]. We prove (Proposition 5) that Mp, q may be characterized by factorization through p-convex and q-concave Banach lattices. We use this fact together with a variant of the complex interpolation method introduced in [1], to show that an operator which belongs to Mp, q may be factored through a Banach lattice with modulus of uniform convexity (uniform smoothness) of power type arbitrarily close to q (to p). This last result yields similar geometric properties in subspaces of spaces having G.L. – l.u.st.


2021 ◽  
Vol 26 (3) ◽  
pp. 05020053
Author(s):  
Jingwei Hou ◽  
Meiyan Zheng ◽  
Moyan Zhu ◽  
Yanjuan Wang

Sign in / Sign up

Export Citation Format

Share Document