The cancellation problem for projective modules and related topics

Author(s):  
A. A. Suslin
Author(s):  
Manoj Kumar Keshari

AbstractLet A be an affine algebra of dimension n over an algebraically closed field k with 1/n! ∈ k. Let P be a projective A-module of rank n − 1. Then, it is an open question due to N. Mohan Kumar, whether P is cancellative. We prove the following results:(i) If A = R[T,T−1], then P is cancellative.(ii) If A = R[T,1/f] or A = R[T,f1/f,…,fr/f], where f(T) is a monic polynomial and f,f1,…,fr is R[T]-regular sequence, then An−1 is cancellative. Further, if k = p, then P is cancellative.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Javier Gutiérrez García ◽  
Ulrich Höhle ◽  
Tomasz Kubiak

2004 ◽  
Vol 277 (2) ◽  
pp. 689-702 ◽  
Author(s):  
M.C. Izurdiaga
Keyword(s):  

2006 ◽  
Vol 56 (2) ◽  
pp. 601-611 ◽  
Author(s):  
Mustafa Alkan ◽  
Yücel Tiraş

2018 ◽  
Vol 17 (01) ◽  
pp. 1850014 ◽  
Author(s):  
Jian Wang ◽  
Yunxia Li ◽  
Jiangsheng Hu

In this paper, we introduce and study left (right) [Formula: see text]-semihereditary rings over any associative ring, and these rings are exactly [Formula: see text]-semihereditary rings defined by Mahdou and Tamekkante provided that [Formula: see text] is a commutative ring. Some new characterizations of left [Formula: see text]-semihereditary rings are given. Applications go in three directions. The first is to give a sufficient condition when a finitely presented right [Formula: see text]-module is Gorenstein flat if and only if it is Gorenstein projective provided that [Formula: see text] is left coherent. The second is to investigate the relationships between Gorenstein flat modules and direct limits of finitely presented Gorenstein projective modules. The third is to obtain some new characterizations of semihereditary rings, [Formula: see text]-[Formula: see text] rings and [Formula: see text] rings.


Sign in / Sign up

Export Citation Format

Share Document