Infrared emission from interstellar dust in the local interstellar medium

Author(s):  
W. T. Reach ◽  
F. Boulanger
1997 ◽  
Vol 166 ◽  
pp. 353-362
Author(s):  
W.T. Reach ◽  
F. Boulanger

AbstractIn this contribution, we discuss some topics in the study of dust in the local interstellar medium. The spectrum of local clouds has recently been measured using ISO and COBE, confirming in general the models of excitation and cooling of dust illuminated by the the interstellar radiation field. We discuss in some detail the spatial correlation of interstellar dust and gas and the idea that infrared emission traces the total column density of the interstellar medium, with the particular application to the formation of H2. We also show that dust is present in the nearby Loop I shell, with properties similar to average, suggesting that the walls of the Local Bubble would also have relatively ‘normal’ dust content.


1973 ◽  
Vol 52 ◽  
pp. 485-504 ◽  
Author(s):  
Neville J. Woolf

Infrared astronomy has in the past decade emerged from being a part-time occupation of a few astronomers. Three major subdivisions of research have become apparent, solar system, galactic and extragalactic studies. In each of these fields infrared studies have made unique contributions. Planets emit the bulk of their radiation in the infrared, and infrared studies are essential to study planetary thermal problems. Many extragalactic objects have been found to emit astonishingly large fluxes in the infrared.In galactic astronomy the current major contribution of infrared studies has been to act as a bridge between two separate disciplines, stellar astronomy, and studies of the interstellar medium. Infrared studies have proved invaluable for studying star birth and star death. Both of these phases had previously seemed mysterious and invisible. And indeed they were not visible, because they occurred shrouded in dust that blocked transmission of visible rays. However, the dust that is merely opaque in the visible, is self-luminous in the infrared, and so in the midst of this optical darkness there has appeared a great infrared light.At this time, we have progressed further with the study of star death than of star birth. The ejected matter from dying stars carries the dust shroud with it into space, and so the gas and dust become part of the interstellar medium. This process is clearly significant for understanding the composition and origin of interstellar dust.Because star death and birth are embedded in dust, there has developed a separate interest in explaining the physical processes at work in these dust clouds. This study explains processes of optical circumstellar absorption lines, intrinsic polarization of cool star light, and stellar molecular masers.Perhaps what these two paragraphs have just said is that our conceptual scheme of separating stellar astronomy and interstellar astronomy still acts as such a division that the infrared astronomer needs to present different aspects of this one topic, circumstellar infrared emission to different audiences. Such an opportunity has been given to the author in that he has been asked to give within a few weeks two talks. The first of these reviews is being presented at IAU Symposium # 52 on Interstellar Dust and Related Topics. The second is being given at the summer meeting of the Astronomical Society of the Pacific which has a symposium on Circumstellar Dust.The two reviews have been made complementary. The first of these is primarily an observational study. It shows the infrared observations of stellar and interstellar dust, and in a qualitative way shows that one gives rise to the other. The second review is theoretical and attempts to place the first study in its theoretical context. It deals almost exclusively with the stellar and circumstellar parts of the topic. Together they present one man's view of Circumstellar Infrared Emission.The literature relevant to this topic is voluminous. There have been false leads, dead ends, and irrelevant detail. This review has attempted to follow a thread through this detail, and to expose the skeleton of a scheme for understanding the processes at work. Such a review is intrinsically more dangerous, more likely to become obsolete than a comprehensive one. However, by carrying the seeds of its own destruction it seems to offer a greater opportunity for the growth of astronomy.


2002 ◽  
Vol 4 ◽  
pp. 9-9
Author(s):  
I. Ristorcelli ◽  
B. Stepnik ◽  
X. Dupac ◽  
A. Abergel ◽  
J. P. Bernard ◽  
...  

1997 ◽  
Vol 484 (2) ◽  
pp. 761-778 ◽  
Author(s):  
Ricardo Genova ◽  
John E. Beckman ◽  
Stuart Bowyer ◽  
Thomas Spicer

1998 ◽  
Vol 11 (1) ◽  
pp. 86-89
Author(s):  
Ulysses J. Sofia

Abstract The well measured gas-phase abundances in the low halo suggest that this region of the Galaxy has total (gas plus dust) metal abundances which are close to those in the solar neighborhood. The gas-phase abundances in the halo are generally higher than those seen in the disk, however, this affect is likely due to the destruction of dust in the halo clouds. Observations of high velocity clouds (HVCs) in the halo suggest that these clouds have metal abundances which are substantially lower than those measured for the local interstellar medium. These determinations, however, are often of lower quality than those for the low halo because of uncertainties in the hydrogen abundances along the sightlines, in the incorporation of elements into dust, and in the partial ionization of the clouds.


1986 ◽  
Vol 6 (2) ◽  
pp. 91-94
Author(s):  
J.L. Linsky, ◽  
W.B. Landsman ◽  
B.D. Savage ◽  
S.R. Heap ◽  
A.M. Smith ◽  
...  

2013 ◽  
Vol 9 (S297) ◽  
pp. 147-152 ◽  
Author(s):  
G. C. Clayton

AbstractThe relationship between DIBs and dust is still unknown. The correlation between reddening and DIB strength means that the DIBs are mixed in with the dust and gas in interstellar clouds. The DIBs are relatively stronger in the diffuse interstellar medium than in dense clouds. There is only a weak correlation between the DIBs and the UV extinction parameters including the 2175 Å bump strength and the far-UV rise. In addition, the bump dust grains are sometimes polarized, while the DIBs are not. However, observations of DIBs in the SMC show that when the 2175 Å bump is weak or missing so are the DIBs. Two of the four sightlines that deviate strongly from the CCM UV extinction in the Galaxy show weak DIBs.


2021 ◽  
Vol 917 (2) ◽  
pp. L20
Author(s):  
N. V. Pogorelov ◽  
F. Fraternale ◽  
T. K. Kim ◽  
L. F. Burlaga ◽  
D. A. Gurnett

Sign in / Sign up

Export Citation Format

Share Document