scholarly journals Feynman integrals and intersection theory

2019 ◽  
Vol 2019 (2) ◽  
Author(s):  
Pierpaolo Mastrolia ◽  
Sebastian Mizera
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Hjalte Frellesvig ◽  
Federico Gasparotto ◽  
Stefano Laporta ◽  
Manoj K. Mandal ◽  
Pierpaolo Mastrolia ◽  
...  

AbstractWe present a detailed description of the recent idea for a direct decomposition of Feynman integrals onto a basis of master integrals by projections, as well as a direct derivation of the differential equations satisfied by the master integrals, employing multivariate intersection numbers. We discuss a recursive algorithm for the computation of multivariate intersection numbers, and provide three different approaches for a direct decomposition of Feynman integrals, which we dub thestraight decomposition, thebottom-up decomposition, and thetop-down decomposition. These algorithms exploit the unitarity structure of Feynman integrals by computing intersection numbers supported on cuts, in various orders, thus showing the synthesis of the intersection-theory concepts with unitarity-based methods and integrand decomposition. We perform explicit computations to exemplify all of these approaches applied to Feynman integrals, paving a way towards potential applications to generic multi-loop integrals.


2019 ◽  
Author(s):  
Ruth Britto ◽  
Samuel Abreu ◽  
Claude Duhr ◽  
Einan Gardi ◽  
James Matthew

2021 ◽  
Vol 814 ◽  
pp. 136085
Author(s):  
Jiaqi Chen ◽  
Xuhang Jiang ◽  
Xiaofeng Xu ◽  
Li Lin Yang

2007 ◽  
Vol 11 (2) ◽  
pp. 939-977 ◽  
Author(s):  
John R Klein ◽  
E Bruce Williams
Keyword(s):  

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Luke Corcoran ◽  
Florian Loebbert ◽  
Julian Miczajka ◽  
Matthias Staudacher

Abstract We extend the recently developed Yangian bootstrap for Feynman integrals to Minkowski space, focusing on the case of the one-loop box integral. The space of Yangian invariants is spanned by the Bloch-Wigner function and its discontinuities. Using only input from symmetries, we constrain the functional form of the box integral in all 64 kinematic regions up to twelve (out of a priori 256) undetermined constants. These need to be fixed by other means. We do this explicitly, employing two alternative methods. This results in a novel compact formula for the box integral valid in all kinematic regions of Minkowski space.


2011 ◽  
Vol 45 (4) ◽  
pp. 305-315
Author(s):  
A. G. Khovanskii

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Nikhil Kalyanapuram

Abstract We combine the technology of the theory of polytopes and twisted intersection theory to derive a large class of double copy relations that generalize the classical relations due to Kawai, Lewellen and Tye (KLT). To do this, we first study a generalization of the scattering equations of Cachazo, He and Yuan. While the scattering equations were defined on ℳ0, n — the moduli space of marked Riemann spheres — the new scattering equations are defined on polytopes known as accordiohedra, realized as hyperplane arrangements. These polytopes encode as patterns of intersection the scattering amplitudes of generic scalar theories. The twisted period relations of such intersection numbers provide a vast generalization of the KLT relations. Differential forms dual to the bounded chambers of the hyperplane arrangements furnish a natural generalization of the Bern-Carrasco-Johansson (BCJ) basis, the number of which can be determined by counting the number of solutions of the generalized scattering equations. In this work the focus is on a generalization of the BCJ expansion to generic scalar theories, although we use the labels KLT and BCJ interchangeably.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
D. Chicherin ◽  
V. Sotnikov

Abstract We complete the analytic calculation of the full set of two-loop Feynman integrals required for computation of massless five-particle scattering amplitudes. We employ the method of canonical differential equations to construct a minimal basis set of transcendental functions, pentagon functions, which is sufficient to express all planar and nonplanar massless five-point two-loop Feynman integrals in the whole physical phase space. We find analytic expressions for pentagon functions which are manifestly free of unphysical branch cuts. We present a public library for numerical evaluation of pentagon functions suitable for immediate phenomenological applications.


Sign in / Sign up

Export Citation Format

Share Document