scholarly journals The Kerr-Schild double copy in Lifshitz spacetime

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Gökhan Alkaç ◽  
Mehmet Kemal Gümüş ◽  
Mustafa Tek

Abstract The Kerr-Schild double copy is a map between exact solutions of general relativity and Maxwell’s theory, where the nonlinear nature of general relativity is circumvented by considering solutions in the Kerr-Schild form. In this paper, we give a general formulation, where no simplifying assumption about the background metric is made, and show that the gauge theory source is affected by a curvature term that characterizes the deviation of the background spacetime from a constant curvature spacetime. We demonstrate this effect explicitly by studying gravitational solutions with non-zero cosmological constant. We show that, when the background is flat, the constant charge density filling all space in the gauge theory that has been observed in previous works is a consequence of this curvature term. As an example of a solution with a curved background, we study the Lifshitz black hole with two different matter couplings. The curvature of the background, i.e., the Lifshitz spacetime, again yields a constant charge density; however, unlike the previous examples, it is canceled by the contribution from the matter fields. For one of the matter couplings, there remains no additional non-localized source term, providing an example for a non-vacuum gravity solution corresponding to a vacuum gauge theory solution in arbitrary dimensions.

1984 ◽  
Vol 17 (11) ◽  
pp. 2436-2441 ◽  
Author(s):  
Paul Ander ◽  
Mahmoud Kardan

2006 ◽  
Vol 71 (10) ◽  
pp. 1393-1406 ◽  
Author(s):  
Dorota Sieńko ◽  
Jolanta Nieszporek ◽  
Krzysztof Nieszporek ◽  
Dorota Gugała ◽  
Jadwiga Saba

The electrosorption behavior of cytosine at the mercury electrode/acetic buffer of pH 4 and 5 interfaces was determined from the double-layer differential capacity measurements extrapolated to zero frequency. Solutions of cytosine were prepared to cover the range from 1 × 10-4 to 6 × 10-3 mol dm-3. Adsorption of cytosine was described by the adsorption isotherms constants derived from the surface pressure data as a function of electrode charge density and bulk concentration. The obtained values of the relative surface excesses Γ′ were higher in the acetic buffer of pH 4 than of pH 5. Maximum of cytosine adsorption in the mentioned buffers was at -581 and -551 mV, respectively. The values of the standard Gibbs energy ∆G° obtained from the Frumkin isotherm were higher in the buffer of pH 4 than of pH 5. The values of the interaction parameter A indicated weaker repulsive interaction between adsorbed molecules of cytosine in the former buffer. The adsorption parameters obtained from the virial isotherm confirmed corresponding parameters obtained from the Frumkin isotherm. The dependences of ΦM-2 on the relative surface excess at a constant charge density were analyzed in order to calculate the electrostatic parameters of the inner layer.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
John Joseph M. Carrasco ◽  
Laurentiu Rodina ◽  
Suna Zekioğlu

Abstract Color-kinematics duality in the adjoint has proven key to the relationship between gauge and gravity theory scattering amplitude predictions. In recent work, we demonstrated that at four-point tree-level, a small number of color-dual EFT building blocks could encode all higher-derivative single-trace massless corrections to gauge and gravity theories compatible with adjoint double-copy. One critical aspect was the trivialization of building higher-derivative color-weights — indeed, it is the mixing of kinematics with non-adjoint-type color-weights (like the permutation-invariant d4) which permits description via adjoint double-copy. Here we find that such ideas clarify the predictions of local five-point higher-dimensional operators as well. We demonstrate how a single scalar building block can be combined with color structures to build higher-derivative color factors that generate, through double copy, the amplitudes associated with higher-derivative gauge-theory operators. These may then be suitably mapped, through another double-copy, to higher-derivative corrections in gravity.


Axioms ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 24
Author(s):  
Marta Dudek ◽  
Janusz Garecki

In this paper, we show that the general relativity action (and Lagrangian) in recent Einstein–Palatini formulation is equivalent in four dimensions to the action (and Langrangian) of a gauge field. First, we briefly showcase the Einstein–Palatini (EP) action, and then we present how Einstein fields equations can be derived from it. In the next section, we study Einstein–Palatini action integral for general relativity with a positive cosmological constant Λ in terms of the corrected curvature Ω c o r . We see that in terms of Ω c o r this action takes the form typical for a gauge field. Finally, we give a geometrical interpretation of the corrected curvature Ω c o r .


2006 ◽  
Vol 03 (08) ◽  
pp. 1493-1500 ◽  
Author(s):  
STEFANO VIGNOLO ◽  
ROBERTO CIANCI ◽  
DANILO BRUNO

The formulation of General Relativity presented in [1] and the Hamiltonian formulation of Gauge theories described in [2] are made to interact. The resulting scheme allows to see General Relativity as a constrained Gauge theory.


Sign in / Sign up

Export Citation Format

Share Document