scholarly journals The action of the Virasoro algebra in the two-dimensional Potts and loop models at generic Q

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Linnea Grans-Samuelsson ◽  
Lawrence Liu ◽  
Yifei He ◽  
Jesper Lykke Jacobsen ◽  
Hubert Saleur

Abstract The spectrum of conformal weights for the CFT describing the two-dimensional critical Q-state Potts model (or its close cousin, the dense loop model) has been known for more than 30 years [1]. However, the exact nature of the corresponding Vir ⊗ $$ \overline{\mathrm{Vir}} $$ Vir ¯ representations has remained unknown up to now. Here, we solve the problem for generic values of Q. This is achieved by a mixture of different techniques: a careful study of “Koo-Saleur generators” [2], combined with measurements of four-point amplitudes, on the numerical side, and OPEs and the four-point amplitudes recently determined using the “interchiral conformal bootstrap” in [3] on the analytical side. We find that null-descendants of diagonal fields having weights (hr,1, hr,1) (with r ∈ ℕ*) are truly zero, so these fields come with simple Vir ⊗ $$ \overline{\mathrm{Vir}} $$ Vir ¯ (“Kac”) modules. Meanwhile, fields with weights (hr,s, hr,−s) and (hr,−s, hr,s) (with r, s ∈ ℕ*) come in indecomposable but not fully reducible representations mixing four simple Vir ⊗ $$ \overline{\mathrm{Vir}} $$ Vir ¯ modules with a familiar “diamond” shape. The “top” and “bottom” fields in these diamonds have weights (hr,−s, hr,−s), and form a two-dimensional Jordan cell for L0 and $$ {\overline{L}}_0 $$ L ¯ 0 . This establishes, among other things, that the Potts-model CFT is logarithmic for Q generic. Unlike the case of non-generic (root of unity) values of Q, these indecomposable structures are not present in finite size, but we can nevertheless show from the numerical study of the lattice model how the rank-two Jordan cells build up in the infinite-size limit.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yifei He ◽  
Jesper Lykke Jacobsen ◽  
Hubert Saleur

Abstract Based on the spectrum identified in our earlier work [1], we numerically solve the bootstrap to determine four-point correlation functions of the geometrical connectivities in the Q-state Potts model. Crucial in our approach is the existence of “interchiral conformal blocks”, which arise from the degeneracy of fields with conformal weight hr,1, with r ∈ ℕ*, and are related to the underlying presence of the “interchiral algebra” introduced in [2]. We also find evidence for the existence of “renormalized” recursions, replacing those that follow from the degeneracy of the field $$ {\Phi}_{12}^D $$ Φ 12 D in Liouville theory, and obtain the first few such recursions in closed form. This hints at the possibility of the full analytical determination of correlation functions in this model.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Marco Picco ◽  
Sylvain Ribault ◽  
Raoul Santachiara

We study four-point functions of critical percolation in two dimensions, and more generally of the Potts model. We propose an exact ansatz for the spectrum: an infinite, discrete and non-diagonal combination of representations of the Virasoro algebra. Based on this ansatz, we compute four-point functions using a numerical conformal bootstrap approach. The results agree with Monte-Carlo computations of connectivities of random clusters.


1996 ◽  
Vol 463 ◽  
Author(s):  
R. Paredes ◽  
J. Valbuena

ABSTRACTMotivated by recent experiments on phase behavior of systems confined in porous media, we have studied the effect of quenched bond randomness on the nature of the phase transition in the two dimensional Potts model. To model the effects of the porous matrix we chose the couplings of the q state Potts Hamiltonian from the distribution P(Jij) = pδ(Jij – J) + (1 – p)δ(Jij). For a range of p values, away from the percolation threshold, the transition temperature follows the mean field prediction Tc(p) = Tc(1)p. Furthermore, we observed that the strong first order transition, that appears in the pure case for q = 10, changes two a second order transition. It is also clear from our simulations that the second order transition of the q = 3 pure case changes to a second order transition of a different universality class. A finite size scaling analysis suggests that in both cases the critical exponents, in the presence of disorder, fall into the universality class of the two dimensional pure Ising model. This result agrees with theoretical calculations recently published [1].


1981 ◽  
Vol 64 (10) ◽  
pp. 1-8
Author(s):  
Tsuyoshi Matsuo ◽  
Yasumichi Hasegawa ◽  
Yoshikuni Okada

Sign in / Sign up

Export Citation Format

Share Document