scholarly journals A conformal bootstrap approach to critical percolation in two dimensions

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Marco Picco ◽  
Sylvain Ribault ◽  
Raoul Santachiara

We study four-point functions of critical percolation in two dimensions, and more generally of the Potts model. We propose an exact ansatz for the spectrum: an infinite, discrete and non-diagonal combination of representations of the Virasoro algebra. Based on this ansatz, we compute four-point functions using a numerical conformal bootstrap approach. The results agree with Monte-Carlo computations of connectivities of random clusters.

Author(s):  
D. G. Neal

AbstractThis paper describes new detailed Monte Carlo investigations into bond and site percolation problems on the set of eleven regular and semi-regular (Archimedean) lattices in two dimensions.


1995 ◽  
Vol 10 (10) ◽  
pp. 1413-1448
Author(s):  
DIRK VERSTEGEN

We review and extend the conformal bootstrap approach to the classification of quantum W-algebras. These are extensions of the Virasoro algebra by a finite set of primary fields. Explicit forms are given for the most general crossing-symmetric four-point functions. Together with a large c expansion of the conformal blocks, this gives a powerful tool for finding all W-algebras that are associative for generic values of the central charge c.


1996 ◽  
Vol 10 (15) ◽  
pp. 731-736
Author(s):  
A.V. BAKAEV ◽  
V.I. KABANOVICH

The 3-state square lattice Potts model with interactions of spins belonging to the different sublattices, the nearest-neighbor (NN) interaction and “the move of the knight” (MK) antiferromagnetic interactions which also couples spins on the sublattice A to spins on B, is studied by Monte Carlo simulations. It is shown that the MK-interactions stabilizes the BSS phase in two dimensions, preserving macroscopic degeneracy of the ground state. In a range of competing ferromagnetic (NN) interactions “stripes” or “double-stripes” phases are found.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Linnea Grans-Samuelsson ◽  
Lawrence Liu ◽  
Yifei He ◽  
Jesper Lykke Jacobsen ◽  
Hubert Saleur

Abstract The spectrum of conformal weights for the CFT describing the two-dimensional critical Q-state Potts model (or its close cousin, the dense loop model) has been known for more than 30 years [1]. However, the exact nature of the corresponding Vir ⊗ $$ \overline{\mathrm{Vir}} $$ Vir ¯ representations has remained unknown up to now. Here, we solve the problem for generic values of Q. This is achieved by a mixture of different techniques: a careful study of “Koo-Saleur generators” [2], combined with measurements of four-point amplitudes, on the numerical side, and OPEs and the four-point amplitudes recently determined using the “interchiral conformal bootstrap” in [3] on the analytical side. We find that null-descendants of diagonal fields having weights (hr,1, hr,1) (with r ∈ ℕ*) are truly zero, so these fields come with simple Vir ⊗ $$ \overline{\mathrm{Vir}} $$ Vir ¯ (“Kac”) modules. Meanwhile, fields with weights (hr,s, hr,−s) and (hr,−s, hr,s) (with r, s ∈ ℕ*) come in indecomposable but not fully reducible representations mixing four simple Vir ⊗ $$ \overline{\mathrm{Vir}} $$ Vir ¯ modules with a familiar “diamond” shape. The “top” and “bottom” fields in these diamonds have weights (hr,−s, hr,−s), and form a two-dimensional Jordan cell for L0 and $$ {\overline{L}}_0 $$ L ¯ 0 . This establishes, among other things, that the Potts-model CFT is logarithmic for Q generic. Unlike the case of non-generic (root of unity) values of Q, these indecomposable structures are not present in finite size, but we can nevertheless show from the numerical study of the lattice model how the rank-two Jordan cells build up in the infinite-size limit.


2021 ◽  
Vol 182 (3) ◽  
Author(s):  
Gernot Münster ◽  
Manuel Cañizares Guerrero

AbstractRoughening of interfaces implies the divergence of the interface width w with the system size L. For two-dimensional systems the divergence of $$w^2$$ w 2 is linear in L. In the framework of a detailed capillary wave approximation and of statistical field theory we derive an expression for the asymptotic behaviour of $$w^2$$ w 2 , which differs from results in the literature. It is confirmed by Monte Carlo simulations.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yifei He ◽  
Jesper Lykke Jacobsen ◽  
Hubert Saleur

Abstract Based on the spectrum identified in our earlier work [1], we numerically solve the bootstrap to determine four-point correlation functions of the geometrical connectivities in the Q-state Potts model. Crucial in our approach is the existence of “interchiral conformal blocks”, which arise from the degeneracy of fields with conformal weight hr,1, with r ∈ ℕ*, and are related to the underlying presence of the “interchiral algebra” introduced in [2]. We also find evidence for the existence of “renormalized” recursions, replacing those that follow from the degeneracy of the field $$ {\Phi}_{12}^D $$ Φ 12 D in Liouville theory, and obtain the first few such recursions in closed form. This hints at the possibility of the full analytical determination of correlation functions in this model.


Sign in / Sign up

Export Citation Format

Share Document