Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations

1998 ◽  
Vol 228 (1) ◽  
pp. 83-120 ◽  
Author(s):  
Thierry Cazenave ◽  
Fred B. Weissler
2019 ◽  
Vol 150 (2) ◽  
pp. 789-811
Author(s):  
Yūki Naito

AbstractWe consider the Cauchy problem $$\left\{ {\matrix{ {u_t = \Delta u + u^p,\quad } \hfill & {x\in {\bf R}^N,\;t \leq 0,} \hfill \cr {u(x,0) = u_0(x),\quad } \hfill & {x\in {\bf R}^N,} \hfill \cr } } \right.$$where N > 2, p > 1, and u0 is a bounded continuous non-negative function in RN. We study the case where u0(x) decays at the rate |x|−2/(p−1) as |x| → ∞, and investigate the convergence property of the global solutions to the forward self-similar solutions. We first give the precise description of the relationship between the spatial decay of initial data and the large time behaviour of solutions, and then we show the existence of solutions with a time decay rate slower than the one of self-similar solutions. We also show the existence of solutions that behave in a complicated manner.


1991 ◽  
Vol 117 (3-4) ◽  
pp. 251-273 ◽  
Author(s):  
Thierry Cazenave ◽  
Fred B. Weissler

SynopsisWe study solutions in ℝn of the nonlinear Schrödinger equation iut + Δu = λ |u|γu, where γ is the fixed power 4/n. For this particular power, these solutions satisfy the “pseudo-conformal” conservation law, and the set of solutions is invariant under a related transformation. This transformation gives a correspondence between global and non-global solutions (if λ < 0), and therefore allows us to deduce properties of global solutions from properties of non-global solutions, and vice versa. In particular, we show that a global solution is stable if and only if it decays at the same rate as a solution to the linear problem (with λ = 0). Also, we obtain an explicit formula for the inverse of the wave operator; and we give a sufficient condition (if λ < 0) that the blow up time of a non-global solution is a continuous function on the set of initial values with (for example) negative energy.


2015 ◽  
Vol 22 (8) ◽  
pp. 082109 ◽  
Author(s):  
Tomer Shussman ◽  
Shay I. Heizler

Sign in / Sign up

Export Citation Format

Share Document