scholarly journals Module Varieties and Representation Type of Finite-Dimensional Algebras

2013 ◽  
Vol 2015 (3) ◽  
pp. 631-650 ◽  
Author(s):  
Calin Chindris ◽  
Ryan Kinser ◽  
Jerzy Weyman
2004 ◽  
Vol 47 (3) ◽  
pp. 669-678 ◽  
Author(s):  
Volodymyr Mazorchuk ◽  
Lyudmila Turowska

AbstractWe determine when the $*$-double of a finite-dimensional complex algebra is $*$-finite, $*$-tame and $*$-wild.AMS 2000 Mathematics subject classification: Primary 46K10; 16G60


1982 ◽  
Vol 47 (4) ◽  
pp. 734-738
Author(s):  
Bruce I. Rose

In this note we show that taking a scalar extension of two elementarily equivalent finite-dimensional algebras over the same field preserves elementary equivalence. The general question of whether or not tensor product preserves elementary equivalence was originally raised in [4]. In [3] Feferman relates an example of Ersov which answers the question negatively. Eklof and Olin [7] also provide a counterexample to the general question in the context of two-sorted structures. Thus the result proved below is a partial positive answer to a general question whose status has been resolved negatively. From the viewpoint of applied model theory it seems desirable to find contexts in which positive statements of preservation can be obtained. Our result does have an application; a corollary to it increases our understanding of what it means for two division algebras to be elementarily equivalent.All algebras are finite-dimensional algebras over fields. All algebras contain an identity element, but are not necessarily associative.Recall that the center of a not necessarily associative algebra A is the set of elements which commute and “associate” with all elements of A. The notion of a scalar extension is an important one in algebra. If A is an algebra over F and G is an extension field of F, then the scalar extension of A by G is the algebra A ⊗F G.


2008 ◽  
Vol 07 (03) ◽  
pp. 379-392
Author(s):  
DIETER HAPPEL

For a finite dimensional hereditary algebra Λ local properties of the quiver [Formula: see text] of tilting modules are investigated. The existence of special neighbors of a given tilting module is shown. If Λ has more than 3 simple modules it is shown as an application that Λ is of wild representation type if and only if [Formula: see text] is a subquiver of [Formula: see text].


2021 ◽  
Vol 28 (01) ◽  
pp. 87-90
Author(s):  
Óscar Guajardo Garza ◽  
Marina Rasskazova ◽  
Liudmila Sabinina

We study the variety of binary Lie algebras defined by the identities [Formula: see text], where [Formula: see text] denotes the Jacobian of [Formula: see text], [Formula: see text], [Formula: see text]. Building on previous work by Carrillo, Rasskazova, Sabinina and Grishkov, in the present article it is shown that the Levi and Malcev theorems hold for this variety of algebras.


2021 ◽  
Vol 28 (01) ◽  
pp. 143-154
Author(s):  
Yiyu Li ◽  
Ming Lu

For any positive integer [Formula: see text], we clearly describe all finite-dimensional algebras [Formula: see text] such that the upper triangular matrix algebras [Formula: see text] are piecewise hereditary. Consequently, we describe all finite-dimensional algebras [Formula: see text] such that their derived categories of [Formula: see text]-complexes are triangulated equivalent to derived categories of hereditary abelian categories, and we describe the tensor algebras [Formula: see text] for which their singularity categories are triangulated orbit categories of the derived categories of hereditary abelian categories.


2018 ◽  
Vol 62 (1) ◽  
pp. 291-304
Author(s):  
Dave Benson ◽  
Zinovy Reichstein

AbstractWe examine situations, where representations of a finite-dimensionalF-algebraAdefined over a separable extension fieldK/F, have a unique minimal field of definition. Here the base fieldFis assumed to be a field of dimension ≼1. In particular,Fcould be a finite field ork(t) ork((t)), wherekis algebraically closed. We show that a unique minimal field of definition exists if (a)K/Fis an algebraic extension or (b)Ais of finite representation type. Moreover, in these situations the minimal field of definition is a finite extension ofF. This is not the case ifAis of infinite representation type orFfails to be of dimension ≼1. As a consequence, we compute the essential dimension of the functor of representations of a finite group, generalizing a theorem of Karpenko, Pevtsova and the second author.


1999 ◽  
Vol 51 (3) ◽  
pp. 488-505 ◽  
Author(s):  
W. D. Burgess ◽  
Manuel Saorín

AbstractThis article studies algebras R over a simple artinian ring A, presented by a quiver and relations and graded by a semigroup Σ. Suitable semigroups often arise from a presentation of R. Throughout, the algebras need not be finite dimensional. The graded K0, along with the Σ-graded Cartan endomorphisms and Cartan matrices, is examined. It is used to study homological properties.A test is found for finiteness of the global dimension of a monomial algebra in terms of the invertibility of the Hilbert Σ-series in the associated path incidence ring.The rationality of the Σ-Euler characteristic, the Hilbert Σ-series and the Poincaré-Betti Σ-series is studied when Σ is torsion-free commutative and A is a division ring. These results are then applied to the classical series. Finally, we find new finite dimensional algebras for which the strong no loops conjecture holds.


Sign in / Sign up

Export Citation Format

Share Document