Use of a deviant mitochondrial genetic code in yellow-green algae as a landmark for segregating members within the phylum

1997 ◽  
Vol 45 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Megumi Ehara ◽  
Yasuko Hayashi-Ishimaru ◽  
Yuji Inagaki ◽  
Takeshi Ohama
F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 2072
Author(s):  
Julien Pichon ◽  
Nicholas M. Luscombe ◽  
Charles Plessy

Background: Ascidians, a tunicate class, use a mitochondrial genetic code that is distinct from vertebrates and other invertebrates. Though it has been used to translate the coding sequences from other tunicate species on a case-by-case basis, it is has not been investigated whether this can be done systematically. This is an important because a) some tunicate mitochondrial sequences are currently translated with the invertebrate code by repositories such as NCBI GenBank, and b) uncertainties about the genetic code to use can complicate or introduce errors in phylogenetic studies based on translated mitochondrial protein sequences. Methods: We collected publicly available nucleotide sequences for non-ascidian tunicates including appendicularians such as Oikopleura dioica, translated them using the ascidian mitochondrial code, and built multiple sequence alignments covering all tunicate classes. Results: All tunicates studied here appear to translate AGR codons to glycine instead of serine (invertebrates) or as a stop codon (vertebrates), as initially described in ascidians. Among Oikopleuridae, we suggest further possible changes in the use of the ATA (Ile → Met) and TGA (Trp → Arg) codons. Conclusions: We recommend using the ascidian mitochondrial code in automatic translation pipelines of mitochondrial sequences for all tunicates. Further investigation is required for additional species-specific differences.


Author(s):  
Sergey Petoukhov ◽  
Matthew He

Symmetries of the degeneracy of the vertebrate mitochondrial genetic code in the mosaic matrix form of its presentation are described in this chapter. The initial black-and-white genomatrix of this code is reformed into a new mosaic matrix when internal positions in all triplets are permuted simultaneously. It is revealed unexpectedly that for all six variants of positional permutations in triplets (1-2-3, 2-3-1, 3-1-2, 1-3-2, 2-1-3, 3-2-1) the appropriate genetic matrices possess symmetrical mosaics of the code degeneracy. Moreover the six appropriate mosaic matrices in their binary presentation have the general non-trivial property of their “tetra-reproduction,” which can be utilized in particular for mathematical modeling of the phenomenon of the tetra-division of gametal cells in meiosis. Mutual interchanges of the genetic letters A, C, G, U in the genomatrices lead to new mosaic genomatrices, which possess similar symmetrical and tetra-reproduction properties as well.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 2072 ◽  
Author(s):  
Julien Pichon ◽  
Nicholas M. Luscombe ◽  
Charles Plessy

Background: Ascidians, a tunicate class, use a mitochondrial genetic code that is distinct from vertebrates and other invertebrates. Though it has been used to translate the coding sequences from other tunicate species on a case-by-case basis, it is has not been investigated whether this can be done systematically. This is an important because a) some tunicate mitochondrial sequences are currently translated with the invertebrate code by repositories such as NCBI GenBank, and b) uncertainties about the genetic code to use can complicate or introduce errors in phylogenetic studies based on translated mitochondrial protein sequences. Methods: We collected publicly available nucleotide sequences for non-ascidian tunicates including appendicularians such as Oikopleura dioica, translated them using the ascidian mitochondrial code, and built multiple sequence alignments covering all tunicate classes. Results: All tunicates studied here appear to translate AGR codons to glycine instead of serine (invertebrates) or as a stop codon (vertebrates), as initially described in ascidians. Among Oikopleuridae, we suggest further possible changes in the use of the ATA (Ile → Met) and TGA (Trp → Arg) codons. Conclusions: We recommend using the ascidian mitochondrial code in automatic translation pipelines of mitochondrial sequences for all tunicates. Further investigation is required for additional species-specific differences.


Biosystems ◽  
2019 ◽  
Vol 184 ◽  
pp. 103990
Author(s):  
Elena Fimmel ◽  
Lutz Strüngmann

2019 ◽  
Vol 9 (6) ◽  
pp. 20190038 ◽  
Author(s):  
D. L. Gonzalez ◽  
S. Giannerini ◽  
R. Rosa

The degeneracy of amino acid coding is one of the most crucial and enigmatic aspects of the genetic code. Different theories about the origin of the genetic code have been developed. However, to date, there is no comprehensive hypothesis on the mechanism that might have generated the degeneracy as we observe it. Here, we provide a new theory that explains the origin of the degeneracy based only on symmetry principles. The approach allows one to describe exactly the degeneracy of the early code (progenitor of the genetic code of LUCA, the last universal common ancestor) which is hypothesized to have the same degeneracy as the present vertebrate mitochondrial genetic code. The theory is based upon the tessera code, that fits as the progenitor of the early code. Moreover, we describe in detail the possible evolutionary transitions implied by our theory. The approach is supported by a unified mathematical framework that accounts for the degeneracy properties of both nuclear and mitochondrial genetic codes. Our work provides a new perspective to the understanding of the origin of the genetic code and the roles of symmetry principles in the organization of genetic information.


DNA Research ◽  
2017 ◽  
Vol 24 (6) ◽  
pp. 571-583 ◽  
Author(s):  
Pavol Sulo ◽  
Dana Szabóová ◽  
Peter Bielik ◽  
Silvia Poláková ◽  
Katarína Šoltys ◽  
...  

2012 ◽  
Vol 23 (2) ◽  
pp. 84-91 ◽  
Author(s):  
Federico Abascal ◽  
David Posada ◽  
Rafael Zardoya

Sign in / Sign up

Export Citation Format

Share Document