Symmetrical Analysis Techniques for Genetic Systems and Bioinformatics
Latest Publications


TOTAL DOCUMENTS

12
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Published By IGI Global

9781605661247, 9781605661254

Author(s):  
Sergey Petoukhov ◽  
Matthew He

The set of known dialects of the genetic code is analyzed from the viewpoint of the genetic 8-dimensional Yin-Yang-algebra. This algebra was described in Chapter 7. The octet Yin-Yang-algebra is considered as the model of the genetic code. From the viewpoint of this algebraic model, for example, the sets of 20 amino acids and of 64 triplets consist of sub-sets of “male,” “female,” and “androgynous” molecules, and so forth. This algebra allows one to reveal hidden peculiarities of the structure and evolution of the genetic code and to propose the conception of “sexual” relationships among genetic molecules. The first results of the analysis of the genetic code systems from such an algebraic viewpoint speak about the close connection between evolution of the genetic code and this algebra. They include 7 phenomenological rules of evolution of the dialects of the genetic code. The evolution of the genetic code appears as the struggle between male and female beginnings. The hypothesis about new biophysical factor of “sexual” interactions among genetic molecules is proposed. The matrix forms of presentation of elements of the genetic octet Yin-Yang-algebra are connected with Hadamard matrices by means of the simple U-algorithm. Hadamard matrices play a significant role in the theory of quantum computers, in particular. It leads to new opportunities for the possible understanding of genetic code systems as quantum computer systems. Revealed algebraic properties of the genetic code allow one to put forward the problem of algebraization of bioinformatics on the basis of the algebras of the genetic code. The described investigations are connected with the question: what is life from the viewpoint of algebra?


Author(s):  
Sergey Petoukhov ◽  
Matthew He

This chapter returns to the kind of numeric genetic matrices, which were considered in Chapter 4-6. This kind of genomatrices is not connected with the degeneracy of the genetic code directly, but it is related to some other structural features of the genetic code systems. The connection of the Kronecker families of such genomatrices with special categories of hypercomplex numbers and with their algebras is demonstrated. Hypercomplex numbers of these two categories are named “matrions of a hyperbolic type” and “matrions of a circular type.” These hypercomplex numbers are a generalization of complex numbers and double numbers. Mathematical properties of these additional categories of algebras are presented. A possible meaning and possible applications of these hypercomplex numbers are discussed. The investigation of these hyperbolic numbers in their connection with the parameters of molecular systems of the genetic code can be considered as a continuation of the Pythagorean approach to understanding natural systems.


Author(s):  
Sergey Petoukhov ◽  
Matthew He

This chapter describes data suggesting a connection between matrix genetics and one of the most famous branches of mathematical biology: phyllotaxis laws of morphogenesis. Thousands of scientific works are devoted to this morphogenetic phenomenon, which relates with Fibonacci numbers, the golden section, and beautiful symmetrical patterns. These typical patterns are realized by nature in a huge number of biological bodies on various branches and levels of biological evolution. Some matrix methods are known for a long time to simulate in mathematical forms these phyllotaxis phenomena. This chapter describes connections of the famous Fibonacci (2x2)-matrices with genetic matrices. Some generalizations of the Fibonacci matrices for cases of (2nx2n)-matrices are proposed. Special geometrical invariants, which are connected with the golden section and Fibonacci numbers and which characterize some proportions of human and animal bodies, are described. All these data are related to matrices of the genetic code in some aspects.


Author(s):  
Sergey Petoukhov ◽  
Matthew He

This chapter presents data about cyclic properties of the genetic code in its matrix forms of presentation. These cyclic properties concern cyclic changes of genetic Yin-Yang-matrices and their Yin-Yangalgebras (bipolar algebras) at many kinds of circular permutations of genetic elements in genetic matrices. These circular permutations lead to such reorganizations of the matrix form of presentation of the initial genetic Yin-Yang-algebra that arisen matrices serve as matrix forms of presentations of new Yin-Yang-algebras, as well. They are connected algorithmically with Hadamard matrices. New patterns and relations of symmetry are described. The discovered existence of a hierarchy of the cyclic changes of genetic Yin-Yang-algebras allows one to develop new algebraic models of cyclic processes in bioinformatics and in other related fields. These cycles of changes of the genetic 8-dimensional algebras and of their 8-dimensional numeric systems have many analogies with famous facts and doctrines of modern and ancient physiology, medicine, and so forth. This viewpoint proposes that the famous idea by Pythagoras (about organization of natural systems in accordance with harmony of numerical systems) should be combined with the idea of cyclic changes of Yin-Yang-numeric systems in considered cases. This second idea reminds of the ancient idea of cyclic changes in nature. From such algebraic-genetic viewpoint, the notion of biological time can be considered as a factor of coordinating these hierarchical ensembles of cyclic changes of the genetic multi-dimensional algebras.


Author(s):  
Sergey Petoukhov ◽  
Matthew He

This chapter considers the topic of connections of the genetic code with various fields of culture and with inherited physiological properties which provide existence of these fields. Some examples of such physiological bases for branches of culture are described. These examples are related to linguistics, music, and physiology of color perception. Special attention is paid to connections between the genetic matrices and the system of the Ancient Chinese book “I Ching.” The conception and its arguments are put forward that the famous table of 64 hexagrams of “I Ching” reflects notions of Ancient Chinese about music quint harmony as a universal archetype.


Author(s):  
Sergey Petoukhov ◽  
Matthew He

This chapter is devoted to a consideration of the Kronecker family of the genetic matrices, but in the new numerical form of their presentation. This numeric presentation gives opportunities to investigate ensembles of parameters of the genetic code by means of system analysis including matrix and symmetric methods. In this way, new knowledge is obtained about hidden regularities of element ensembles of the genetic code and about connections of these ensembles with famous mathematical objects and theories from other branches of science. First of all, this chapter demonstrates the connection of moleculargenetic system with the golden section and principles of musical harmony.


Author(s):  
Sergey Petoukhov ◽  
Matthew He

In this chapter, we first use the Gray code representation of the genetic code C = 00, U = 10, G = 11, and A = 01 (C pairs with G, A pairs with U) to generate a sequence of genetic code-based matrices. In connection with these code-based matrices, we use the Hamming distance to generate a sequence of numerical matrices. We then further investigate the properties of the numerical matrices and show that they are doubly stochastic and symmetric. We determine the frequency distributions of the Hamming distances, building blocks of the matrices, decomposition and iterations of matrices. We present an explicit decomposition formula for the genetic code-based matrix in terms of permutation matrices. Furthermore, we establish a relation between the genetic code and a stochastic matrix based on hydrogen bonds of DNA. Using fundamental properties of the stochastic matrices, we determine explicitly the decomposition formula of genetic code-based biperiodic table. By iterating the stochastic matrix, we demonstrate the symmetrical relations between the entries of the matrix and DNA molar concentration accumulation. The evolution matrices based on genetic code were derived by using hydrogen bondsbased symmetric stochastic (2x2)-matrices as primary building blocks. The fractal structure of the genetic code and stochastic matrices were illustrated in the process of matrix decomposition, iteration and expansion in corresponding to the fractal structure of the biperiodic table introduced by Petoukhov (2001a, 2001b, 2005).


Author(s):  
Sergey Petoukhov ◽  
Matthew He

Algebraic properties of the genetic code are analyzed. The investigations of the genetic code on the basis of matrix approaches (“matrix genetics”) are described. The degeneracy of the vertebrate mitochondrial genetic code is reflected in the black-and-white mosaic of the (8*8)-matrix of 64 triplets, 20 amino acids, and stop-signals. The special algorithm, which is based on features of genetic molecules, exists to transform the mosaic genomatrix into the matrices, which are members of the special 8-dimensional algebra. Main mathematical properties of this genetic algebra and its relations with other algebras are analyzed together with some important consequences from the adequate algebraic models of the genetic code. Elements of new “genovector calculation” and ideas of “genetic mechanics” are discussed. The revealed fact of the relation between the genetic code and these genetic algebras, which define new multi-dimensional numeric systems, is discussed in connection with the famous idea by Pythagoras: “All things are numbers.” Simultaneously, these genetic algebras can be utilized as the algebras of genetic operators in biological organisms. The described results are related to the problem of algebraization of bioinformatics. They draw attention to the question: what is life from the viewpoint of algebra?


Author(s):  
Sergey Petoukhov ◽  
Matthew He

This chapter demonstrates results of a comparative investigation of characteristics of degeneracy of all known dialects of the genetic code. This investigation is conducted on the basis of the results of symmetrological analysis, which were described in Chapter 2, about the division of the set of the 20 amino acids into the two canonical subsets: the subset of the 8 high-degeneracy acids and the subset of the 12 low-degeneracy acids. The existence of numerical and structural invariants in the set of these dialects is shown. The derived results from the comparative investigation permit one to formulate some phenomenological rules of evolution of these dialects. These numeric invariants and parameters of code degeneracy draw attention to the formal connection of this evolution with famous facts of chrono-biology and chrono-medicine. The chronocyclic conception of the functioning of molecular-genetic systems is proposed on this basis. The biophysical basis of this conception provides connection to the genetic code structures with mechanisms of photosynthesis which produce living substance by means of utilization of solar energy. And the solar energy comes cyclically on the surface of the Earth. The revealed numeric invariants of evolution of the genetic code give new approaches to the fundamental question, why do 20 amino acids exist? We will demonstrate new patterns of the genetic code systems.


Author(s):  
Sergey Petoukhov ◽  
Matthew He

This chapter is devoted to symmetrical analysis for genetic code systems. The genetic coding possesses the noise-immunity. Mathematical theories of the noise-immunity coding and discrete signals processing are based on matrix methods of representation and analysis of information. These matrix methods, which are connected closely with relations of symmetry, are borrowed for a matrix analysis of ensembles of molecular elements of the genetic code. This chapter describes a uniform representation of ensembles of genetic multiplets in the form of matrices of a cumulative Kronecker family. The analysis of molecular peculiarities of the system of nitrogenous bases reveals the first significant relations of symmetry in these genetic matrices. It permits to introduce a natural numbering the multiplets in each of the genetic matrices and to give the basis for further analysis of genetic structures. The connection of the numerated genetic matrices with famous matrices of dyadic shifts is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document