scholarly journals On the origin of degeneracy in the genetic code

2019 ◽  
Vol 9 (6) ◽  
pp. 20190038 ◽  
Author(s):  
D. L. Gonzalez ◽  
S. Giannerini ◽  
R. Rosa

The degeneracy of amino acid coding is one of the most crucial and enigmatic aspects of the genetic code. Different theories about the origin of the genetic code have been developed. However, to date, there is no comprehensive hypothesis on the mechanism that might have generated the degeneracy as we observe it. Here, we provide a new theory that explains the origin of the degeneracy based only on symmetry principles. The approach allows one to describe exactly the degeneracy of the early code (progenitor of the genetic code of LUCA, the last universal common ancestor) which is hypothesized to have the same degeneracy as the present vertebrate mitochondrial genetic code. The theory is based upon the tessera code, that fits as the progenitor of the early code. Moreover, we describe in detail the possible evolutionary transitions implied by our theory. The approach is supported by a unified mathematical framework that accounts for the degeneracy properties of both nuclear and mitochondrial genetic codes. Our work provides a new perspective to the understanding of the origin of the genetic code and the roles of symmetry principles in the organization of genetic information.

2016 ◽  
Author(s):  
Bohdan B. Khomtchouk ◽  
Claes Wahlestedt ◽  
Wolfgang Nonner

Codon usage in 2730 genomes is analyzed for evolutionary patterns in the usage of synonymous codons and amino acids across prokaryotic and eukaryotic taxa. We group genomes together that have similar amounts of intra-genomic bias in their codon usage, and then compare how usage of particular different codons is diversified across each genome group, and how that usage varies from group to group. Inter-genomic diversity of codon usage increases with intra-genomic usage bias, following a universal pattern. The frequencies of the different codons vary in robust mutual correlation, and the implied synonymous codon and amino acid usages drift together. This kind of correlation indicates that the variation of codon usage across organisms is chiefly a consequence of lateral DNA transfer among diverse organisms. The group of genomes with the greatest intra-genomic bias comprises two distinct subgroups, with each one restricting its codon usage to essentially one unique half of the genetic code table. These organisms include eubacteria and archaea thought to be closest to the hypothesized last universal common ancestor (LUCA). Their codon usages imply genetic diversity near the hypothesized base of the tree of life. There is a continuous evolutionary progression across taxa from the two extremely diversified usages toward balanced usage of different codons (as approached, e.g. in mammals). In that progression, codon frequency variations are correlated as expected from a blending of the two extreme codon usages seen in prokaryotes.AUTHOR SUMMARYThe redundancy intrinsic to the genetic code allows different amino acids to be encoded by up to six synonymous codons. Genomes of different organisms prefer different synonymous codons, a phenomenon known as ‘codon usage bias.’ The phenomenon of codon usage bias is of fundamental interest for evolutionary biology, and is important in a variety of applied settings (e.g., transgene expression). The spectrum of codon usage biases seen in current organisms is commonly thought to have arisen by the combined actions of mutations and selective pressures. This view focuses on codon usage in specific genomes and the consequences of that usage for protein expression.Here we investigate an unresolved question of molecular genetics: are there global rules governing the usage of synonymous codons made by genomic DNA across organisms? To answer this question, we employed a data-driven approach to surveying 2730 species from all kingdoms of the ‘tree of life’ in order to classify their codon usage. A first major result was that the large majority of these organisms use codons rather uniformly on the genome-wide scale, without giving preference to particular codons among possible synonymous alternatives. A second major result was that two compartments of codon usage seem to co-exist and to be expressed in different proportions by different organisms. As such, we investigate how individual different codons are used in different organisms from all taxa. Whereas codon usage is generally believed to be the evolutionary result of both mutations and natural selection, our results suggest a different perspective: the usage of different codons (and amino acids) by different organisms follows a superposition of two distinct patterns of usage. One distinction locates to the third base pair of all different codons, which in one pattern is U or A, and in the other pattern is G or C. This result has two major implications: (1) the variation of codon usage as seen across different organisms is best accounted for by lateral gene transfer among diverse organisms; (2) the organisms that are by protein homology grouped near the base of the ‘tree of life’ comprise two genetically distinct lineages.We find that, over evolutionary time, codon usages have converged from two distinct, non-overlapping usages (e.g., as evident in bacteria and archaea) to a near-uniform, balanced usage of synonymous codons (e.g., in mammals). This shows that the variations of codon (and amino acid) biases reveal a distinct evolutionary progression. We also find that codon usage in bacteria and archaea is most diverse between organisms thought to be closest to the hypothesized last universal common ancestor (LUCA). The dichotomy in codon (and amino acid usages) present near the origin of the current ‘tree of life’ might provide information about the evolutionary development of the genetic code.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nika Pende ◽  
Adrià Sogues ◽  
Daniela Megrian ◽  
Anna Sartori-Rupp ◽  
Patrick England ◽  
...  

AbstractMost archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZCTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.


2021 ◽  
Vol 83 (2) ◽  
pp. 76-79
Author(s):  
Cristina Sousa

The origin of life is one of the most interesting and challenging questions in biology. This article discusses relevant contemporary theories and hypotheses about the origin of life, recent scientific evidence supporting them, and the main contributions of several scientists of different nationalities and specialties in different disciplines. Also discussed are several ideas about the characteristics of the most recent common ancestor, also called the “last universal common ancestor” (or LUCA), including cellular status (unicellular or community) and homogeneity level.


Author(s):  
Nigel Goldenfeld ◽  
Tommaso Biancalani ◽  
Farshid Jafarpour

All known life on the Earth exhibits at least two non-trivial common features: the canonical genetic code and biological homochirality, both of which emerged prior to the Last Universal Common Ancestor state. This article describes recent efforts to provide a narrative of this epoch using tools from statistical mechanics. During the emergence of self-replicating life far from equilibrium in a period of chemical evolution, minimal models of autocatalysis show that homochirality would have necessarily co-evolved along with the efficiency of early-life self-replicators. Dynamical system models of the evolution of the genetic code must explain its universality and its highly refined error-minimization properties. These have both been accounted for in a scenario where life arose from a collective, networked phase where there was no notion of species and perhaps even individuality itself. We show how this phase ultimately terminated during an event sometimes known as the Darwinian transition, leading to the present epoch of tree-like vertical descent of organismal lineages. These examples illustrate concrete examples of universal biology: the quest for a fundamental understanding of the basic properties of living systems, independent of precise instantiation in chemistry or other media. This article is part of the themed issue ‘Reconceptualizing the origins of life’.


Sign in / Sign up

Export Citation Format

Share Document