Cramer’s Rule for the General Solution to a Restricted System of Quaternion Matrix Equations

Author(s):  
Guang-Jing Song ◽  
Shao-Wen Yu
2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Abdur Rehman ◽  
Ivan Kyrchei ◽  
Muhammad Akram ◽  
Ilyas Ali ◽  
Abdul Shakoor

We constitute some necessary and sufficient conditions for the system A1X1=C1, X1B1=C2, A2X2=C3, X2B2=C4, A3X1B3+A4X2B4=Cc, to have a solution over the quaternion skew field in this paper. A novel expression of general solution to this system is also established when it has a solution. The least norm of the solution to this system is also researched in this article. Some former consequences can be regarded as particular cases of this article. Finally, we give determinantal representations (analogs of Cramer’s rule) of the least norm solution to the system using row-column noncommutative determinants. An algorithm and numerical examples are given to elaborate our results.


4open ◽  
2019 ◽  
Vol 2 ◽  
pp. 24 ◽  
Author(s):  
Ivan I. Kyrchei

The system of two-sided quaternion matrix equations with η-Hermicity, A1XA1η* = C1, A2XA2η* = C2 is considered in the paper. Using noncommutative row-column determinants previously introduced by the author, determinantal representations (analogs of Cramer’s rule) of a general solution to the system are obtained. As special cases, Cramer’s rules for an η-Hermitian solution when C1 = Cη*1 and C2 = Cη*2 and for an η-skew-Hermitian solution when C1 = −Cη*1 and C2 = −Cη*2 are also explored.


2019 ◽  
Vol 35 ◽  
pp. 266-284 ◽  
Author(s):  
Zhuo-Heng He

In this paper, the pure product singular value decomposition (PSVD) for four quaternion matrices is given. The system of coupled Sylvester-type quaternion matrix equations with five unknowns $X_{i}A_{i}-B_{i}X_{i+1}=C_{i}$ is considered by using the PSVD approach, where $A_{i},B_{i},$ and $C_{i}$ are given quaternion matrices of compatible sizes $(i=1,2,3,4)$. Some necessary and sufficient conditions for the existence of a solution to this system are derived. Moreover, the general solution to this system is presented when it is solvable.


2018 ◽  
Vol 336 ◽  
pp. 490-499 ◽  
Author(s):  
Guang-Jing Song ◽  
Qing-Wen Wang ◽  
Shao-Wen Yu

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ivan I. Kyrchei

Within the framework of the theory of quaternion row-column determinants previously introduced by the author, we derive determinantal representations (analogs of Cramer’s rule) of solutions and Hermitian solutions to the system of two-sided quaternion matrix equations A1XA1⁎=C1 and A2XA2⁎=C2. Since the Moore-Penrose inverse is a necessary tool to solve matrix equations, we use determinantal representations of the Moore-Penrose inverse previously obtained by the theory of row-column determinants.


2019 ◽  
Vol 2019 ◽  
pp. 1-25 ◽  
Author(s):  
Abdur Rehman ◽  
Ivan Kyrchei ◽  
Ilyas Ali ◽  
Muhammad Akram ◽  
Abdul Shakoor

We determine some necessary and sufficient conditions for the existence of the η-skew-Hermitian solution to the following system AX-(AX)η⁎+BYBη⁎+CZCη⁎=D,Y=-Yη⁎,Z=-Zη⁎ over the quaternion skew field and provide an explicit expression of its general solution. Within the framework of the theory of quaternion row-column noncommutative determinants, we derive its explicit determinantal representation formulas that are an analog of Cramer’s rule. A numerical example is also provided to establish the main result.


2017 ◽  
Vol 24 (01) ◽  
pp. 169-180 ◽  
Author(s):  
Zhuoheng He ◽  
Qingwen Wang

We in this paper derive necessary and sufficient conditions for the system of the periodic discrete-time coupled Sylvester matrix equations [Formula: see text] over the quaternion algebra to be consistent in terms of ranks and generalized inverses of the coefficient matrices. We also give an expression of the general solution to the system when it is solvable. The findings of this paper generalize some known results in the literature.


Sign in / Sign up

Export Citation Format

Share Document