determinantal representation
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
G. Akemann ◽  
T. R. Würfel

Abstract In the ε-regime of chiral perturbation theory the spectral correlations of the Euclidean QCD Dirac operator close to the origin can be computed using random matrix theory. To incorporate the effect of temperature, a random matrix ensemble has been proposed, where a constant, deterministic matrix is added to the Dirac operator. Its eigenvalue correlation functions can be written as the determinant of a kernel that depends on temperature. Due to recent progress in this specific class of random matrix ensembles, featuring a deterministic, additive shift, we can determine the limiting kernel and correlation functions in this class, which is the class of polynomial ensembles. We prove the equivalence between this new determinantal representation of the microscopic eigenvalue correlation functions and existing results in terms of determinants of different sizes, for an arbitrary number of quark flavours, with and without temperature, and extend them to non-zero topology. These results all agree and are thus universal when measured in units of the temperature dependent chiral condensate, as long as we stay below the chiral phase transition.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1784
Author(s):  
Jorge Caravantes ◽  
Gema M. Diaz-Toca ◽  
Mario Fioravanti ◽  
Laureano Gonzalez-Vega

A new determinantal representation for the implicit equation of offsets to conics and quadrics is derived. It is simple, free of extraneous components and provides a very compact expanded form, these representations being very useful when dealing with geometric queries about offsets such as point positioning or solving intersection purposes. It is based on several classical results in “A Treatise on the Analytic Geometry of Three Dimensions” by G. Salmon for offsets to non-degenerate conics and central quadrics.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2119
Author(s):  
Mao-Ting Chien ◽  
Hiroshi Nakazato

A hyperbolic ternary form, according to the Helton–Vinnikov theorem, admits a determinantal representation of a linear symmetric matrix pencil. A kernel vector function of the linear symmetric matrix pencil is a solution to the inverse numerical range problem of a matrix. We show that the kernel vector function associated to an irreducible hyperbolic elliptic curve is related to the elliptic group structure of the theta functions used in the Helton–Vinnikov theorem.


2020 ◽  
Vol 12 (5) ◽  
pp. 43
Author(s):  
Matthew Kim ◽  
Kelly Shin ◽  
Clara Lim ◽  
Selcuk Koyuncu

In this paper we provide some results that replace the condition ”real-zero” by the properties so-called x-substitution and y-substitution. We show that using these properties, we can still write the determinantal representation of a stable polynomial in terms of identity and Hermitian matrices.


Filomat ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 2601-2627
Author(s):  
Abdur Rehman ◽  
Ivan Kyrchei ◽  
Ilyas Ali ◽  
Muhammad Akram ◽  
Abdul Shakoor

Some necessary and sufficient conditions for the existence of the ?-skew-Hermitian solution quaternion matrix equations the system of matrix equations with ?-skew-Hermicity, A1X = C1, XB1 = C2, A2Y = C3, YB2 = C4, X = -X?*; Y=-Y?*, A3XA?*3 + B3YB?*3=C5, are established in this paper by using rank equalities of the coefficient matrices. The general solutions to the system and its special cases are provided when they are consistent. Within the framework of the theory of noncommutative row-column determinants, we also give determinantal representation formulas of finding their exact solutions that are analogs of Cramer?s rule. A numerical example is also given to demonstrate the main results.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ivan I. Kyrchei

In this paper, we give the direct method to find of the core inverse and its generalizations that is based on their determinantal representations. New determinantal representations of the right and left core inverses, the right and left core-EP inverses, and the DMP, MPD, and CMP inverses are derived by using determinantal representations of the Moore-Penrose and Drazin inverses previously obtained by the author. Since the Bott-Duffin inverse has close relation with the core inverse, we give its determinantal representation and its application in finding solutions of the constrained linear equations that is an analog of Cramer’s rule. A numerical example to illustrate the main result is given.


2019 ◽  
Vol 2019 ◽  
pp. 1-25 ◽  
Author(s):  
Abdur Rehman ◽  
Ivan Kyrchei ◽  
Ilyas Ali ◽  
Muhammad Akram ◽  
Abdul Shakoor

We determine some necessary and sufficient conditions for the existence of the η-skew-Hermitian solution to the following system AX-(AX)η⁎+BYBη⁎+CZCη⁎=D,Y=-Yη⁎,Z=-Zη⁎ over the quaternion skew field and provide an explicit expression of its general solution. Within the framework of the theory of quaternion row-column noncommutative determinants, we derive its explicit determinantal representation formulas that are an analog of Cramer’s rule. A numerical example is also provided to establish the main result.


Sign in / Sign up

Export Citation Format

Share Document