scholarly journals Almansi Theorem and Mean Value Formula for Quaternionic Slice-regular Functions

2020 ◽  
Vol 30 (4) ◽  
Author(s):  
Alessandro Perotti

Abstract We prove an Almansi Theorem for quaternionic polynomials and extend it to quaternionic slice-regular functions. We associate to every such function f, a pair $$h_1$$ h 1 , $$h_2$$ h 2 of zonal harmonic functions such that $$f=h_1-\bar{x} h_2$$ f = h 1 - x ¯ h 2 . We apply this result to get mean value formulas and Poisson formulas for slice-regular quaternionic functions.

Author(s):  
Cinzia Bisi ◽  
Jörg Winkelmann

Abstract In this article, we investigate harmonicity, Laplacians, mean value theorems, and related topics in the context of quaternionic analysis. We observe that a Mean Value Formula for slice regular functions holds true and it is a consequence of the well-known Representation Formula for slice regular functions over $${\mathbb {H}}$$ H . Motivated by this observation, we have constructed three order-two differential operators in the kernel of which slice regular functions are, answering positively to the question: is a slice regular function over $${\mathbb {H}}$$ H (analogous to an holomorphic function over $${\mathbb {C}}$$ C ) ”harmonic” in some sense, i.e., is it in the kernel of some order-two differential operator over $${\mathbb {H}}$$ H ? Finally, some applications are deduced such as a Poisson Formula for slice regular functions over $${\mathbb {H}}$$ H and a Jensen’s Formula for semi-regular ones.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 196
Author(s):  
Songting Yin

We prove that in Minkowski spaces, a harmonic function does not necessarily satisfy the mean value formula. Conversely, we also show that a function satisfying the mean value formula is not necessarily a harmonic function. Finally, we conclude that in a Minkowski space, if all harmonic functions have the mean value property or any function satisfying the mean value formula must be a harmonic function, then the Minkowski space is Euclidean.


Author(s):  
Robert Dalmasso

We prove a converse of the mean value property for superharmonic and subharmonic functions. The case of harmonic functions was treated by Epstein and Schiffer.


2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Amedeo Altavilla

AbstractGiven a quaternionic slice regular function f, we give a direct and effective way to compute the coefficients of its spherical expansion at any point. Such coefficients are obtained in terms of spherical and slice derivatives of the function itself. Afterwards, we compare the coefficients of f with those of its slice derivative $$\partial _{c}f$$ ∂ c f obtaining a countable family of differential equations satisfied by any slice regular function. The results are proved in all details and are accompanied to several examples. For some of the results, we also give alternative proofs.


Sign in / Sign up

Export Citation Format

Share Document