fiber bundle
Recently Published Documents


TOTAL DOCUMENTS

988
(FIVE YEARS 190)

H-INDEX

43
(FIVE YEARS 6)

2022 ◽  
Vol 176 ◽  
pp. 114393
Author(s):  
Yanqin Wu ◽  
Jingshan Tian ◽  
Xuyi Zhang ◽  
Xiaobing Hu ◽  
Wenmin Wang ◽  
...  

2022 ◽  
Author(s):  
Alberto Lazari ◽  
Piergiorgio Salvan ◽  
Michiel Cottaar ◽  
Daniel Papp ◽  
Matthew FS Rushworth ◽  
...  

Synaptic plasticity is required for learning and follows Hebb's Rule, the computational principle underpinning associative learning. In recent years, a complementary type of brain plasticity has been identified in myelinated axons, which make up the majority of brain's white matter. Like synaptic plasticity, myelin plasticity is required for learning, but it is unclear whether it is Hebbian or whether it follows different rules. Here, we provide evidence that white matter plasticity operates following Hebb's Rule in humans. Across two experiments, we find that co-stimulating cortical areas to induce Hebbian plasticity leads to relative increases in cortical excitability and associated increases in a myelin marker within the stimulated fiber bundle. We conclude that Hebbian plasticity extends beyond synaptic changes, and can be observed in human white matter fibers.


Fibers ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Rémy Legrand Ndoumou ◽  
Damien Soulat ◽  
Ahmad Rashed Labanieh ◽  
Manuela Ferreira ◽  
Lucien Meva’a ◽  
...  

Plant fibers are being increasingly explored for their use in engineering polymers and composites, and many works have described their properties, especially for flax and hemp fibers. Nevertheless, the availability of plant fibers varies according to the geographical location on the planet. This study presents the first work on the mechanical properties of a tropical fiber extracted from the bast of Cola lepidota (CL) plant. After a debarking step, CL fibers were extracted manually by wet-retting. The tensile properties are first identified experimentally at the fibers scale, and the analysis of the results shows the great influence of the cross-section parameters (diameter, intrinsic porosities) on these properties. Tensile properties of CL fibers are also predicted by the impregnated fiber bundle test (IFBT). At this scale of bundles, a hackling step, which reduces shives and contributes to the parallelization of the fibers within bundles, improves tensile properties predicted by IFBT. The comparison with the properties of plant fibers given in the literature shows that CL fibers have tensile properties in the same range as kenaf, flax or hemp fibers.


Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Matvey S. Pochechuev ◽  
Ilya V. Fedotov ◽  
Maxim A. Solotenkov ◽  
Maria S. Andreeva ◽  
Aleksandr A. Lanin ◽  
...  

We demonstrate an adaptive wave-front shaping of optical beams transmitted through fiber bundles as a powerful resource for multisite, high-resolution bioimaging. With the phases of all the beamlets delivered through up to 6000 different fibers within the fiber bundle controlled individually, by means of a high-definition spatial light modulator, the overall beam transmitted through the fiber bundle can be focused into a beam waist with a diameter less than 1 μm within a targeted area in a biotissue, providing a diffraction-limited spatial resolution adequate for single-cell or even subcellular bioimaging. The field intensity in the adaptively-focused continuous-wave laser beam in our fiber-bundle-imaging setting is more than two orders of magnitude higher than the intensity of the speckle background. Once robust beam focusing was achieved with a suitable phase profile across the input face of the fiber bundle, the beam focus can be scanned over a targeted area with no need for a further adaptive search, by applying a physically intuitive, wave-front-tilting phase mask on the field of input beamlets. This method of beam-focus scanning promises imaging speeds compatible with the requirements of in vivo calcium imaging.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 127
Author(s):  
Jiali Jiang ◽  
Xin Zhou ◽  
Jiaying Liu ◽  
Likang Pan ◽  
Ziting Pan ◽  
...  

We propose an imaging method based on optical fiber bundle combined with micro-scanning technique for improving image quality without complex image reconstruction algorithms. In the proposed method, a piezoelectric-ceramic-chip is used as the micro-displacement driver of the optical fiber bundle, which has the advantages of small volume, fast response speed and high precision. The corresponding displacement of the optical fiber bundle can be generated by precise voltage controlling. An optical fiber bundle with core/cladding diameter 4/80 μm and hexagonal arrangement is used to scan the 1951 USAF target. The scanning step is 1 μm, which is equivalent to the diffraction limit resolution of the optical system. The corresponding information is recorded at high speed through photo-detectors and a high-resolution image is obtained by image stitching processing. The minimum distinguishable stripe width of the proposed imaging technique with piezoelectric-ceramic-chip driven micro-scanning is approximately 2.1 μm, which is 1 time higher than that of direct imaging with a CCD camera whose pixel size is close to the fiber core size. The experimental results indicate that the optical fiber bundle combined with piezoelectric-ceramic-chip driven micro-scanning is a high-speed and high-precision technique for high-resolution imaging.


2021 ◽  
Author(s):  
Takashi Kato ◽  
Megumi Uchida ◽  
Yurina Tanaka ◽  
Kaoru Minoshima

2021 ◽  
Vol 147 ◽  
pp. 106743
Author(s):  
Han Tu ◽  
Zeren Gao ◽  
Chuanbiao Bai ◽  
Shihai Lan ◽  
Yaru Wang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (2) ◽  
pp. 164-172
Author(s):  
Gudrun Kalmbach H.E.

The Planck and other natural numbers are used for units of forces. They arise also as weights of Gleason operators, defined by 3-dimensional spin-like base triples GF and their weigths. The spin lengths are the spin GF weights for instance. The measuring GF operator triples arise by projective duality from 1-dimensional force vectors in projective to R5 extended Hilbert space H4. Color charges are set as a separate force, using a G-compass (figure 2). For the universes evolution after a big bang several maps are introduced, mostly belonging to the gravity field quantum rgb-graviton. It presents the neutral color charge of nucleons. Orthogonal projections of H4, also in spiralic and angular form, central or stereographic projective maps belong to them. They project also the S³ factor of the strong interation geometry S³xS5 down to the SU(2) geometry S³ of the Hopf map. Fiber bundle maps are added also to S5 with the same fiber S1 to the base space CP² for nucleons and atomic kernels. In octonian coordinates, listed by indices, 01234567, there are three projections from the energy space 123456 of SI to complex quaternionic 2x2-matrix presentations of spacetime 1234, of CP² as 3456 and of GR with mass and rgb-gravitons 1256. GR and CP² are projected into 1234 as the universes spacetime, observable as bubbles for atoms and matter 3456 and GR potentials and actions about and for mass carrying systems 1256.


2021 ◽  
Author(s):  
Florian Schwarzhans ◽  
Sylvia Desissaire ◽  
Stefan Steiner ◽  
Michael Pircher ◽  
Christoph Hitzenberger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document