circular sector
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 26)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 933 ◽  
Author(s):  
D. Petrolo ◽  
M. Ungarish ◽  
L. Chiapponi ◽  
S. Longo

We present an experimental study of gravity currents in a cylindrical geometry, in the presence of vegetation. Forty tests were performed with a brine advancing in a fresh water ambient fluid, in lock release, and with a constant and time-varying flow rate. The tank is a circular sector of angle $30^\circ$ with radius equal to 180 cm. Two different densities of the vegetation were simulated by vertical plastic rods with diameter $D=1.6\ \textrm{cm}$ . We marked the height of the current as a function of radius and time and the position of the front as a function of time. The results indicate a self-similar structure, with lateral profiles that after an initial adjustment collapse to a single curve in scaled variables. The propagation of the front is well described by a power law function of time. The existence of self-similarity on an experimental basis corroborates a simple theoretical model with the following assumptions: (i) the dominant balance is between buoyancy and drag, parameterized by a power law of the current velocity $\sim |u|^{\lambda-1}u$ ; (ii) the current advances in shallow-water conditions; and (iii) ambient-fluid dynamics is negligible. In order to evaluate the value of ${\lambda}$ (the only tuning parameter of the theoretical model), we performed two additional series of measurements. We found that $\lambda$ increased from 1 to 2 while the Reynolds number increased from 100 to approximately $6\times10^3$ , and the drag coefficient and the transition from $\lambda=1$ to $\lambda=2$ are quantitatively affected by D, but the structure of the model is not.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2916
Author(s):  
Junho Yeo ◽  
Jong-Ig Lee

A miniaturized wideband loop antenna for terrestrial digital television (DTV) and ultra-high definition (UHD) TV applications is proposed. The original wideband loop antenna consists of a square loop, two circular sectors to connect the loop with central feed points, and a 75 ohm coplanar waveguide (CPW) feed line inserted in the lower circular sector. The straight side of the square loop is replaced with a multiple half-circular-ring-based loop structure. Horizontal slits are appended to the two circular sectors in order to further reduce the antenna size. A tapered CPW feed line is also employed in order to improve impedance matching. The experiment results show that the proposed miniaturized loop antenna operates in the 460.7–806.2 MHz frequency band for a voltage standing wave ratio less than two, which fully covers the DTV and UHD TV bands (470–771 MHz). The proposed miniaturized wideband loop antenna has a length reduction of 21.43%, compared to the original loop antenna.


Author(s):  
Sudip Kumar Ghosh ◽  
Abhijyoti Ghosh ◽  
Subhradeep Chakraborty ◽  
Lolit Kumar Singh ◽  
Sudipta Chattopadhyay

Sign in / Sign up

Export Citation Format

Share Document