On an inverse problem to Frobenius’ theorem

2011 ◽  
Vol 96 (2) ◽  
pp. 109-114 ◽  
Author(s):  
Wei Meng ◽  
Jiangtao Shi
2012 ◽  
Vol 11 (05) ◽  
pp. 1250092 ◽  
Author(s):  
WEI MENG ◽  
JIANGTAO SHI ◽  
KELIN CHEN

Let G be a finite group and e a positive integer dividing |G|, the order of G. Denoting Le(G) = {x ∈ G|xe = 1}. Frobenius proved that |Le(G)| = ke for some positive integer k ≥ 1. Let k(G) be the upper bound of the set {k||Le(G)| = ke, ∀ e ||G|}. In this paper, a complete classification of the finite group G with k(G) = 3 is obtained.


1982 ◽  
Vol 2 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Dexing Feng ◽  
Guangtian Zhu
Keyword(s):  

2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


Sign in / Sign up

Export Citation Format

Share Document