On the mean square of the error term in the approximate functional equation for $ \zeta ^2(s) $

1997 ◽  
Vol 68 (6) ◽  
pp. 468-476 ◽  
Author(s):  
Aleksandar Ivi?
2000 ◽  
Vol 43 (2) ◽  
pp. 309-323 ◽  
Author(s):  
Manfred Kühleitner ◽  
Werner Georg Nowak

AbstractIn this article we consider sums S(t) = Σnψ (tf(n/t)), where ψ denotes, essentially, the fractional part minus ½ f is a C4-function with f″ non-vanishing, and summation is extended over an interval of order t. For the mean-square of S(t), an asymptotic formula is established. If f is algebraic this can be sharpened by the indication of an error term.


2008 ◽  
Vol 04 (05) ◽  
pp. 747-756 ◽  
Author(s):  
ANNE-MARIA ERNVALL-HYTÖNEN

We give a proof for the approximate functional equation for exponential sums related to holomorphic cusp forms and derive an upper bound for the error term.


1999 ◽  
Vol 127 (1) ◽  
pp. 117-131 ◽  
Author(s):  
ALEKSANDAR IVIĆ ◽  
KOHJI MATSUMOTO ◽  
YOSHIO TANIGAWA

We study Δ(x; ϕ), the error term in the asymptotic formula for [sum ]n[les ]xcn, where the cns are generated by the Rankin–Selberg series. Our main tools are Voronoï-type formulae. First we reduce the evaluation of Δ(x; ϕ) to that of Δ1(x; ϕ), the error term of the weighted sum [sum ]n[les ]x(x−n)cn. Then we prove an upper bound and a sharp mean square formula for Δ1(x; ϕ), by applying the Voronoï formula of Meurman's type. We also prove that an improvement of the error term in the mean square formula would imply an improvement of the upper bound of Δ(x; ϕ). Some other related topics are also discussed.


Sign in / Sign up

Export Citation Format

Share Document