Binding site of activators of the cystic fibrosis transmembrane conductance regulator in the nucleotide binding domains

2005 ◽  
Vol 62 (4) ◽  
pp. 446-460 ◽  
Author(s):  
O. Moran ◽  
L. J. V. Galietta ◽  
O. Zegarra-Moran
2000 ◽  
Vol 276 (15) ◽  
pp. 11575-11581 ◽  
Author(s):  
Ilana Kogan ◽  
Mohabir Ramjeesingh ◽  
Ling-Jun Huan ◽  
Yanchun Wang ◽  
Christine E. Bear

Mutations in the cystic fibrosis gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR) lead to altered chloride (Cl−) flux in affected epithelial tissues. CFTR is a Cl−channel that is regulated by phosphorylation, nucleotide binding, and hydrolysis. However, the molecular basis for the functional regulation of wild type and mutant CFTR remains poorly understood. CFTR possesses two nucleotide binding domains, a phosphorylation-dependent regulatory domain, and two transmembrane domains that comprise the pore through which Cl−permeates. Mutations of residues lining the channel pore (e.g.R347D) are typically thought to cause disease by altering the interaction of Cl−with the pore. However, in the present study we show that the R347D mutation and diphenylamine-2-carboxylate (an open pore inhibitor) also inhibit CFTR ATPase activity, revealing a novel mechanism for cross-talk from the pore to the catalytic domains. In both cases, the reduction in ATPase correlates with a decrease in nucleotide turnover rather than affinity. Finally, we demonstrate that glutathione (GSH) inhibits CFTR ATPase and that this inhibition is altered in the CFTR-R347D variant. These findings suggest that cross-talk between the pore and nucleotide binding domains of CFTR may be important in thein vivoregulation of CFTR in health and disease.


2006 ◽  
Vol 282 (7) ◽  
pp. 4533-4544 ◽  
Author(s):  
Wei Wang ◽  
Karen Bernard ◽  
Ge Li ◽  
Kevin L. Kirk

Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels are essential mediators of salt transport across epithelia. Channel opening normally requires ATP binding to both nucleotide-binding domains (NBDs), probable dimerization of the two NBDs, and phosphorylation of the R domain. How phosphorylation controls channel gating is unknown. Loss-of-function mutations in the CFTR gene cause cystic fibrosis; thus, there is considerable interest in compounds that improve mutant CFTR function. Here we investigated the mechanism by which CFTR is activated by curcumin, a natural compound found in turmeric. Curcumin opened CFTR channels by a novel mechanism that required neither ATP nor the second nucleotide-binding domain (NBD2). Consequently, this compound potently activated CF mutant channels that are defective for the normal ATP-dependent mode of gating (e.g. G551D and W1282X), including channels that lack NBD2. The stimulation of NBD2 deletion mutants by curcumin was strongly inhibited by ATP binding to NBD1, which implicates NBD1 as a plausible activation site. Curcumin activation became irreversible during prolonged exposure to this compound following which persistently activated channels gated dynamically in the absence of any agonist. Although CFTR activation by curcumin required neither ATP binding nor heterodimerization of the two NBDs, it was strongly dependent on prior channel phosphorylation by protein kinase A. Curcumin is a useful functional probe of CFTR gating that opens mutant channels by circumventing the normal requirements for ATP binding and NBD heterodimerization. The phosphorylation dependence of curcumin activation indicates that the R domain can modulate channel opening without affecting ATP binding to the NBDs or their heterodimerization.


2002 ◽  
Vol 366 (2) ◽  
pp. 541-548 ◽  
Author(s):  
Martina GENTZSCH ◽  
Andrei ALEKSANDROV ◽  
Luba ALEKSANDROV ◽  
John R. RIORDAN

The cystic fibrosis transmembrane conductance regulator (CFTR) contains two nucleotide-binding domains (NBDs) or ATP-binding cassettes (ABCs) that characterize a large family of membrane transporters. Although the three-dimensional structures of these domains from several ABC proteins have been determined, this is not the case for CFTR, and hence the domains are defined simply on the basis of sequence alignment. The functional C-terminal boundary of NBD1 of CFTR was located by analysis of chloride channel function [Chan, Csanady, Seto-Young, Nairn and Gadsby (2000) J. Gen. Physiol. 116, 163–180]. However, the boundary between the C-terminal end of NBD2 and sequences further downstream in the whole protein, that are important for its cellular localization and endocytotic turnover, has not been defined. We have now done this by assaying the influence of progressive C-terminal truncations on photolabelling of NBD2 by 8-azido-ATP, which reflects hydrolysis, as well as binding, at that domain, and on NBD2-dependent channel gating itself. The boundary defined in this way is between residues 1420 and 1424, which corresponds to the final β-strand in aligned NBDs whose structures have been determined. Utilization of this information should facilitate the generation of monodisperse NBD2 polypeptides for structural analysis, which until now has not been possible. The established boundary includes within NBD2 a hydrophobic patch of four residues (1413–1416) previously shown to be essential for CFTR maturation and stability [Gentzsch and Riordan (2001) J. Biol. Chem. 276, 1291–1298]. This hydrophobic cluster is conserved in most ABC proteins, and on alignment with ones of known structure constitutes the penultimate β-strand of the domain which is likely to participate in essential structure-stabilizing β-sheet formation.


Sign in / Sign up

Export Citation Format

Share Document