channel opening
Recently Published Documents


TOTAL DOCUMENTS

725
(FIVE YEARS 121)

H-INDEX

72
(FIVE YEARS 5)

Author(s):  
Alican Gulsevin ◽  
Andrew M Glazer ◽  
Tiffany Shields ◽  
Brett M Kroncke ◽  
Dan M Roden ◽  
...  

The cardiac sodium ion channel (NaV1.5) is a protein with four domains (DI-DIV), each with six transmembrane segments. Its opening and subsequent inactivation results in the brief rapid influx of Na+ ions resulting in the depolarization of cardiomyocytes. The neurotoxin veratridine (VTD) inhibits NaV1.5 inactivation resulting in longer channel opening times, and potentially fatal action potential prolongation. VTD is predicted to bind at the channel pore, but alternative binding sites have not been ruled out. To determine the binding site of VTD on NaV1.5, we performed docking calculations and high-throughput electrophysiology experiments. The docking calculations identified two distinct binding regions. The first site was in the pore, close to the binding site of NaV1.4 and NaV1.5 blocking drugs in experimental structures. The second site was at the “mouth” of the pore at the cytosolic side, partly solvent-exposed. Mutations at this site (L409, E417, and I1466) had large effects on VTD binding, while residues deeper in the pore had no effect, consistent with VTD binding at the mouth site. Overall, our results suggest a VTD binding site close to the cytoplasmic mouth of the channel pore. Binding at this alternative site might indicate an allosteric inactivation mechanism for VTD at NaV1.5.


2021 ◽  
Vol 22 (24) ◽  
pp. 13652
Author(s):  
Eleonora Persoons ◽  
Sara Kerselaers ◽  
Thomas Voets ◽  
Joris Vriens ◽  
Katharina Held

Sex hormone steroidal drugs were reported to have modulating actions on the ion channel TRPM3. Pregnenolone sulphate (PS) presents the most potent known endogenous chemical agonist of TRPM3 and affects several gating modes of the channel. These includes a synergistic action of PS and high temperatures on channel opening and the PS-induced opening of a noncanonical pore in the presence of other TRPM3 modulators. Moreover, human TRPM3 variants associated with neurodevelopmental disease exhibit an increased sensitivity for PS. However, other steroidal sex hormones were reported to influence TRPM3 functions with activating or inhibiting capacity. Here, we aimed to answer how DHEAS, estradiol, progesterone and testosterone act on the various modes of TRPM3 function in the wild-type channel and two-channel variants associated with human disease. By means of calcium imaging and whole-cell patch clamp experiments, we revealed that all four drugs are weak TRPM3 agonists that share a common steroidal interaction site. Furthermore, they exhibit increased activity on TRPM3 at physiological temperatures and in channels that carry disease-associated mutations. Finally, all steroids are able to open the noncanonical pore in wild-type and DHEAS also in mutant TRPM3. Collectively, our data provide new valuable insights in TRPM3 gating, structure-function relationships and ligand sensitivity.


Author(s):  
Chen Zegeng

The scientific topicality. The book industry around the world has suffered significant losses due to the COVID-19 pandemic. It required the implementation of various anti-crisis measures and adaptation to these new circumstances. At present, a certain amount of experience has been accumulated, making it possible to summarize the effectiveness of measures taken in order to bring the book industry out of this crisis. Given that the People’s Republic of China was the first country to face the pandemic, its experience in transforming the book industry under such conditions deserves a detailed study. The purpose. Summarize the experience of transforming the book industry in PRC under the conditions of the pandemic; highlight its main directions; demonstrate that the success of overcoming the consequences of COVID-19 directly depends on the level of digitalization in the given field. The methodology. To achieve the stated goals, such methods as analysis of statistical material, sources on the topic of research, and summarization were used. The results. In the course of summarizing the experience of transforming the book industry of the PRC under the conditions of the pandemic, it was found that the success of overcoming the consequences of COVID-19 directly depends on the level of digitalization of the given field. The scientific novelty. For the first time, the experience of transforming the book industry of the PRC under the conditions of the pandemic is summarized. The practical significance. The successful experience of transforming the book industry of the PRC under the conditions of the pandemic can be used by other countries, including Ukraine. The conclusions. In the course of summarizing the experience of transforming the book industry in the PRC under the conditions of the pandemic, it was possible to highlight the following areas: transition mainly to online sales in book retail; active use of postal services as a delivery channel; opening of digital publishing resources to provide free access; expansion of media platforms for content distribution; organizing of online readings; use of multi-format content, multimedia content and cross-media for content distribution; use of the informative potential of the book industry to combat the pandemic in form of anti-epidemic publications and the development of platforms for informational resources. An analysis of this experience shows that the success of overcoming the consequences of COVID-19 directly depends on the level of digitalization of the book industry.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1811
Author(s):  
James B. Ames

L-type voltage-gated Ca2+ channels (CaV1.2 and CaV1.3, called CaV) interact with the Ca2+ sensor proteins, calmodulin (CaM) and Ca2+ binding Protein 1 (CaBP1), that oppositely control Ca2+-dependent channel activity. CaM and CaBP1 can each bind to the IQ-motif within the C-terminal cytosolic domain of CaV, which promotes increased channel open probability under basal conditions. At elevated cytosolic Ca2+ levels (caused by CaV channel opening), Ca2+-bound CaM binding to CaV is essential for promoting rapid Ca2+-dependent channel inactivation (CDI). By contrast, CaV binding to CaBP1 prevents CDI and promotes Ca2+-induced channel opening (called CDF). In this review, I provide an overview of the known structures of CaM and CaBP1 and their structural interactions with the IQ-motif to help understand how CaM promotes CDI, whereas CaBP1 prevents CDI and instead promotes CDF. Previous electrophysiology studies suggest that Ca2+-free forms of CaM and CaBP1 may pre-associate with CaV under basal conditions. However, previous Ca2+ binding data suggest that CaM and CaBP1 are both calculated to bind to Ca2+ with an apparent dissociation constant of ~100 nM when CaM or CaBP1 is bound to the IQ-motif. Since the neuronal basal cytosolic Ca2+ concentration is ~100 nM, nearly half of the neuronal CaV channels are suggested to be bound to Ca2+-bound forms of either CaM or CaBP1 under basal conditions. The pre-association of CaV with calcified forms of CaM or CaBP1 are predicted here to have functional implications. The Ca2+-bound form of CaBP1 is proposed to bind to CaV under basal conditions to block CaV binding to CaM, which could explain how CaBP1 might prevent CDI.


2021 ◽  
Author(s):  
Cheng Qian ◽  
Yixin Fan ◽  
Lu-Lu Ji ◽  
Li Wan ◽  
Rumeng Jia ◽  
...  

Abstract Background: Current treatments for chronic pain are not satisfactory, prompting a frantic search for new therapeutics and new therapeutic targets. Our previous study indicates KATP channel opener has analgesic effect, but the mechanism has not been elucidated. We speculated that KATP channel opener may increase suppressor of cytokine signaling (SOCS)-3 expression to induce inflammatory tolerance and attenuate chronic pain. Methods: The plantar incision (PI) surgery-induced postoperative pain was performed to establish chronic pain model. Growth arrest–specific 6 (Gas6)-/- and Axl-/- mice were used for signaling research. The microglia cell line BV-2 was cultured for in vitro experiments.Results: KATP channel opener significantly attenuated incision-induced mechanical allodynia in mice, associated with the up-regulated expression of SOCS3. Opening KATP channels induced the expression of SOCS3 dependent on Gas6/Axl signaling pathway in microglia. Opening KATP channels inhibits incision-induced mechanical allodynia by activating Gas6/Axl-SOCS3 signaling pathway. Opening KATP channels induces inflammatory tolerance to relieve neuroinflammation and postoperative pain.Conclusions: We demonstrated that KATP channel opening activated Gas6/Axl/SOCS3 signaling to induce inflammatory tolerance and relief chronic pain. We explored a new target for anti-inflammatory and analgesia by regulating the innate immune system, and provide a theoretical basis for clinical preemptive analgesia.


Cephalalgia ◽  
2021 ◽  
pp. 033310242110535
Author(s):  
Sarah L Christensen ◽  
Rikke H Rasmussen ◽  
Sanne La Cour ◽  
Charlotte Ernstsen ◽  
Thomas F Hansen ◽  
...  

Background Opening of KATP channels by systemic levcromakalim treatment triggers attacks in migraine patients and hypersensitivity to von Frey stimulation in a mouse model. Blocking of these channels is effective in several preclinical migraine models. It is unknown in what tissue and cell type KATP-induced migraine attacks are initiated and which KATP channel subtype is targeted. Methods In mouse models, we administered levcromakalim intracerebroventricularly, intraperitoneally and intraplantarily and compared the nociceptive responses by von Frey and hotplate tests. Mice with a conditional loss-of-function mutation in the smooth muscle KATP channel subunit Kir6.1 were given levcromakalim and GTN and examined with von Frey filaments. Arteries were tested for their ability to dilate ex vivo. mRNA expression, western blotting and immunohistochemical stainings were made to identify relevant target tissue for migraine induced by KATP channel opening. Results Systemic administration of levcromakalim induced hypersensitivity but central and local administration provided antinociception respectively no effect. The Kir6.1 smooth muscle knockout mouse was protected from both GTN and levcromakalim induced hypersensitivity, and their arteries had impaired dilatory response to the latter. mRNA and protein expression studies showed that trigeminal ganglia did not have significant KATP channel expression of any subtype, whereas brain arteries and dura mater primarily expressed the Kir6.1 + SUR2B subtype. Conclusion Hypersensitivity provoked by GTN and levcromakalim in mice is dependent on functional smooth muscle KATP channels of extracerebral origin. These results suggest a vascular contribution to hypersensitivity induced by migraine triggers.


2021 ◽  
Author(s):  
Dmitrij Ljaschenko ◽  
Achmed Mrestani ◽  
Martin Pauli ◽  
Josef Dudel ◽  
Manfred Heckmann

We recorded currents through the cell membrane at single nAChR molecules, held at ACh or Epibatidine (Ebd) concentrations of 0.01, 0.1, 1, 10 or 100 μM. The measured current amplitudes had an absolutely fixed value of 15 pA. This was valid for different agonists at all concentrations. Binding an agonist at one or both sites in the ring of subunits allowed to open the channel, the site that initiated the opening determined the duration of the final opening of the channel. In addition, the current flow was continuously interrupted by < 3 μs shut times. The resolution of our records was optimized to reach 5 μs, but was insufficient to resolve an unknown proportion of shorter shut times. Therefore, measured durations of openings are overestimated, and cited in brackets: τo1 (3 μs) elicited by agonist-binding at the δ-site, τo2 and τo3 (40 and 183 μs) by binding at the ϵ-site, and τo4 (752 μs) by binding at the δ- and ϵ-site. Mono-liganded nAChRs trigger short bursts of 0.6 ms duration. Bi-liganded nAChRs generate long bursts that at low agonist concentrations last 12 ms. Above 10 μM ACh, long bursts are shortened, with 100 μM ACh, to 5 ms, and further at higher concentrations. While ACh was the main agonist, Ebd bound more effectively than ACh to the ϵ-site.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Guo ◽  
Yating Zhang ◽  
Ya Hou ◽  
Pengmei Guo ◽  
Xiaobo Wang ◽  
...  

Objective: Danggui Buxue decoction (DBD), consisting of Angelicae Sinensis Radix (ASR) and Astragali Radix (AR), is a famous prescription with the function of antivasoconstriction. This study intends to probe its mechanisms on the relaxation of the middle cerebral artery (MCA).Methods: Vascular tension of rat MCA was measured using a DMT620 M system. First, the identical series of concentrations of DBD, ASR, and AR were added into resting KCl and U46619 preconstricted MCA. According to the compatibility ratio, their dilatation effects were further investigated on KCl and U46619 preconstricted vessels. Third, four K+ channel blockers were employed to probe the vasodilator mechanism on KCl-contracted MCA. We finally examined the effects of DBD, ASR, and AR on the vascular tone of U46619-contracted MCA in the presence or absence of Ca2+.Results: Data suggested that DBD, ASR, and AR can relax on KCl and U46619 precontracted MCA with no effects on resting vessels. The vasodilator effect of ASR was greater than those of DBD and AR on KCl-contracted MCA. For U46619-contracted MCA, ASR showed a stronger vasodilator effect than DBD and AR at low concentrations, but DBD was stronger than ASR at high concentrations. Amazingly, the vasodilator effect of DBD was stronger than that of AR at all concentrations on two vasoconstrictors which evoked MCA. The vasodilator effect of ASR was superior to that of DBD at a compatibility ratio on KCl-contracted MCA at low concentrations, while being inferior to DBD at high concentrations. However, DBD exceeded AR in vasodilating MCA at all concentrations. For U46619-constricted MCA, DBD, ASR, and AR had almost identical vasodilation. The dilation of DBD and AR on KCl-contracted MCA was independent of K+ channel blockers. However, ASR may inhibit the K+ channel opening partially through synergistic interactions with Gli and BaCl2. DBD, ASR, and AR may be responsible for inhibiting [Ca2+]out, while ASR and AR can also inhibit [Ca2+]in.Conclusion: DBD can relax MCA with no effects on resting vessels. The mechanism may be related to ASR’s inhibition of KATP and Kir channels. Meanwhile, the inhibition of [Ca2+]out by DBD, ASR, and AR as well as the inhibition of [Ca2+]in by ASR and AR may contribute to dilate MCA.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rebecca Conners ◽  
Mathew McLaren ◽  
Urszula Łapińska ◽  
Kelly Sanders ◽  
M. Rhia L. Stone ◽  
...  

AbstractThe Ff family of filamentous bacteriophages infect gram-negative bacteria, but do not cause lysis of their host cell. Instead, new virions are extruded via the phage-encoded pIV protein, which has homology with bacterial secretins. Here, we determine the structure of pIV from the f1 filamentous bacteriophage at 2.7 Å resolution by cryo-electron microscopy, the first near-atomic structure of a phage secretin. Fifteen f1 pIV subunits assemble to form a gated channel in the bacterial outer membrane, with associated soluble domains projecting into the periplasm. We model channel opening and propose a mechanism for phage egress. By single-cell microfluidics experiments, we demonstrate the potential for secretins such as pIV to be used as adjuvants to increase the uptake and efficacy of antibiotics in bacteria. Finally, we compare the f1 pIV structure to its homologues to reveal similarities and differences between phage and bacterial secretins.


Sign in / Sign up

Export Citation Format

Share Document