scholarly journals Asymptotic Behavior of Solutions of the Dirac System with an Integrable Potential

2021 ◽  
Vol 93 (5) ◽  
Author(s):  
Łukasz Rzepnicki

AbstractWe consider the Dirac system on the interval [0, 1] with a spectral parameter $$\mu \in {\mathbb {C}}$$ μ ∈ C and a complex-valued potential with entries from $$L_p[0,1]$$ L p [ 0 , 1 ] , where $$1\le p$$ 1 ≤ p . We study the asymptotic behavior of its solutions in a strip $$|\mathrm{Im}\,\mu |\le d$$ | Im μ | ≤ d for $$\mu \rightarrow \infty $$ μ → ∞ . These results allow us to obtain sharp asymptotic formulas for eigenvalues and eigenfunctions of Sturm–Liouville operators associated with the aforementioned Dirac system.

Filomat ◽  
2021 ◽  
Vol 35 (6) ◽  
pp. 2071-2080
Author(s):  
Erdoğan Şen

In this work, spectral properties of a discontinuous boundary-value problem with retarded argument which contains a spectral parameter in the boundary conditions and in the transmission conditions at the point of discontinuity are investigated. To this aim, asymptotic formulas for the eigenvalues and eigenfunctions are obtained.


2013 ◽  
Vol 11 (12) ◽  
Author(s):  
Oktay Veliev

AbstractWe obtain uniform asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm-Liouville operators L t (q) with a potential q ∈ L 1[0,1] and t-periodic boundary conditions, t ∈ (−π, π]. Using these formulas, we find sufficient conditions on the potential q such that the number of spectral singularities in the spectrum of the Hill operator L(q) in L 2(−∞,∞) is finite. Then we prove that the operator L(q) has no spectral singularities at infinity and it is an asymptotically spectral operator provided that the potential q satisfies sufficient conditions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kusano Takaŝi ◽  
Jelena V. Manojlović

AbstractWe study the asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation(p(t)\lvert x^{\prime}\rvert^{\alpha}\operatorname{sgn}x^{\prime})^{\prime}+q(% t)\lvert x\rvert^{\alpha}\operatorname{sgn}x=0,where q is a continuous function which may take both positive and negative values in any neighborhood of infinity and p is a positive continuous function satisfying one of the conditions\int_{a}^{\infty}\frac{ds}{p(s)^{1/\alpha}}=\infty\quad\text{or}\quad\int_{a}^% {\infty}\frac{ds}{p(s)^{1/\alpha}}<\infty.The asymptotic formulas for generalized regularly varying solutions are established using the Karamata theory of regular variation.


2019 ◽  
Vol 50 (3) ◽  
pp. 349-359
Author(s):  
Andrey Aleksandrovich Golubkov ◽  
Yulia Vladimirovna Kuryshova

he inverse spectral problem for the Sturm-Liouville equation with a piecewise-entire potential function and the discontinuity conditions for solutions on a rectifiable curve \(\gamma \subset \textbf{C}\) by the transfer matrix along this curve is studied. By the method of a unit transfer matrix the uniqueness of the solution to this problem is proved with the help of studying of the asymptotic behavior of the solutions to the Sturm-Liouville equation for large values of the spectral parameter module.


Author(s):  
Abdizhahan Sarsenbi

In this work, we studied the Green&rsquo;s functions of the second order differential operators with involution. Uniform equiconvergence of spectral expansions related to the second-order differential operators with involution is obtained. Basicity of eigenfunctions of the second-order differential operator operator with complex-valued coefficient is established.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Erdoğan Şen ◽  
Jong Jin Seo ◽  
Serkan Araci

In the present paper, a discontinuous boundary-value problem with retarded argument at the two points of discontinuities is investigated. We obtained asymptotic formulas for the eigenvalues and eigenfunctions. This is the first work containing two discontinuities points in the theory of differential equations with retarded argument. In that special case the transmission coefficients and retarded argument in the results obtained in this work coincide with corresponding results in the classical Sturm-Liouville operator.


Sign in / Sign up

Export Citation Format

Share Document