scholarly journals Rotation Numbers and Rotation Classes on One-Dimensional Tiling Spaces

Author(s):  
José Aliste-Prieto ◽  
Betseygail Rand ◽  
Lorenzo Sadun
2019 ◽  
Vol 108 (2) ◽  
pp. 226-244 ◽  
Author(s):  
V. R. BAZAO ◽  
S. L. CARVALHO ◽  
C. R. DE OLIVEIRA

By using methods of subordinacy theory, we study packing continuity properties of spectral measures of discrete one-dimensional Schrödinger operators acting on the whole line. Then we apply these methods to Sturmian operators with rotation numbers of quasibounded density to show that they have purely $\unicode[STIX]{x1D6FC}$-packing continuous spectrum. A dimensional stability result is also mentioned.


2011 ◽  
Vol 31 (6) ◽  
pp. 1819-1834 ◽  
Author(s):  
LORENZO SADUN

AbstractExact regularity was introduced recently as a property of homological Pisot substitutions in one dimension. In this paper, we consider the analog of exact regularity for arbitrary tiling spaces. Let T be a d-dimensional repetitive tiling, and let Ω be its hull. If Ȟd(Ω,ℚ)=ℚk, then there exist k patches each of whose appearances governs the number of appearances of every other patch. This gives uniform estimates on the convergence of all patch frequencies to the ergodic limit. If the tiling T comes from a substitution, then we can quantify that convergence rate. If T is also one dimensional, we put constraints on the measure of any cylinder set in Ω.


2016 ◽  
Vol 38 (3) ◽  
pp. 1086-1117 ◽  
Author(s):  
GREGORY R. MALONEY ◽  
DAN RUST

We study the topology and dynamics of subshifts and tiling spaces associated to non-primitive substitutions in one dimension. We identify a property of a substitution, which we call tameness, in the presence of which most of the possible pathological behaviours of non-minimal substitutions cannot occur. We find a characterization of tameness, and use this to prove a slightly stronger version of a result of Durand, which says that the subshift of a minimal substitution is topologically conjugate to the subshift of a primitive substitution. We then extend to the non-minimal setting a result obtained by Anderson and Putnam for primitive substitutions, which says that a substitution tiling space is homeomorphic to an inverse limit of a certain finite graph under a self-map induced by the substitution. We use this result to explore the structure of the lattice of closed invariant subspaces and quotients of a substitution tiling space, for which we compute cohomological invariants that are stronger than the Čech cohomology of the tiling space alone.


2009 ◽  
Vol 30 (6) ◽  
pp. 1607-1627 ◽  
Author(s):  
MARCY BARGE ◽  
BEVERLY DIAMOND ◽  
JOHN HUNTON ◽  
LORENZO SADUN

AbstractAnderson and Putnam showed that the cohomology of a substitution tiling space may be computed by collaring tiles to obtain a substitution which ‘forces its border’. One can then represent the tiling space as an inverse limit of an inflation and substitution map on a cellular complex formed from the collared tiles; the cohomology of the tiling space is computed as the direct limit of the homomorphism induced by inflation and substitution on the cohomology of the complex. In earlier work, Barge and Diamond described a modification of the Anderson–Putnam complex on collared tiles for one-dimensional substitution tiling spaces that allows for easier computation and provides a means of identifying certain special features of the tiling space with particular elements of the cohomology. In this paper, we extend this modified construction to higher dimensions. We also examine the action of the rotation group on cohomology and compute the cohomology of the pinwheel tiling space.


2013 ◽  
Vol 160 (5) ◽  
pp. 703-719 ◽  
Author(s):  
Franz Gähler ◽  
Gregory R. Maloney

2012 ◽  
Vol 34 (1) ◽  
pp. 55-94 ◽  
Author(s):  
MARCY BARGE ◽  
CARL OLIMB

AbstractEvery sufficiently regular non-periodic space of tilings of $\mathbb {R}^d$ has at least one pair of distinct tilings that are asymptotic under translation in all the directions of some open $(d-1)$-dimensional hemisphere. If the tiling space comes from a substitution, there is a way of defining a location on such tilings at which asymptoticity ‘starts’. This leads to the definition of the branch locus of the tiling space: this is a subspace of the tiling space, of dimension at most $d-1$, that summarizes the ‘asymptotic in at least a half-space’ behavior in the tiling space. We prove that if a $d$-dimensional self-similar substitution tiling space has a pair of distinct tilings that are asymptotic in a set of directions that contains a closed $(d-1)$-hemisphere in its interior, then the branch locus is a topological invariant of the tiling space. If the tiling space is a two-dimensional self-similar Pisot substitution tiling space, the branch locus has a description as an inverse limit of an expanding Markov map on a zero- or one-dimensional simplicial complex.


Sign in / Sign up

Export Citation Format

Share Document