scholarly journals Quasi-Locality Bounds for Quantum Lattice Systems. Part II. Perturbations of Frustration-Free Spin Models with Gapped Ground States

Author(s):  
Bruno Nachtergaele ◽  
Robert Sims ◽  
Amanda Young

AbstractWe study the stability with respect to a broad class of perturbations of gapped ground-state phases of quantum spin systems defined by frustration-free Hamiltonians. The core result of this work is a proof using the Bravyi–Hastings–Michalakis (BHM) strategy that under a condition of local topological quantum order (LTQO), the bulk gap is stable under perturbations that decay at long distances faster than a stretched exponential. Compared to previous work, we expand the class of frustration-free quantum spin models that can be handled to include models with more general boundary conditions, and models with discrete symmetry breaking. Detailed estimates allow us to formulate sufficient conditions for the validity of positive lower bounds for the gap that are uniform in the system size and that are explicit to some degree. We provide a survey of the BHM strategy following the approach of Michalakis and Zwolak, with alterations introduced to accommodate more general than just periodic boundary conditions and more general lattices. We express the fundamental condition known as LTQO by means of an indistinguishability radius, which we introduce. Using the uniform finite-volume results, we then proceed to study the thermodynamic limit. We first study the case of a unique limiting ground state and then also consider models with spontaneous breaking of a discrete symmetry. In the latter case, LTQO cannot hold for all local observables. However, for perturbations that preserve the symmetry, we show stability of the gap and the structure of the broken symmetry phases. We prove that the GNS Hamiltonian associated with each pure state has a non-zero spectral gap above the ground state.

2009 ◽  
Vol 79 (22) ◽  
Author(s):  
Salvatore M. Giampaolo ◽  
Gerardo Adesso ◽  
Fabrizio Illuminati

2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345030 ◽  
Author(s):  
MARCELO S. SARANDY ◽  
THIAGO R. DE OLIVEIRA ◽  
LUIGI AMICO

The ground state of a quantum spin chain is a natural playground for investigating correlations. Nevertheless, not all correlations are genuinely of quantum nature. Here we review the recent progress to quantify the "quantumness" of the correlations throughout the phase diagram of quantum spin systems. Focusing to one spatial dimension, we discuss the behavior of quantum discord (QD) close to quantum phase transitions (QPT). In contrast to the two-spin entanglement, pairwise discord is effectively long-ranged in critical regimes. Besides the features of QPT, QD is especially feasible to explore the factorization phenomenon, giving rise to nontrivial ground classical states in quantum systems. The effects of spontaneous symmetry breaking are also discussed as well as the identification of quantum critical points through correlation witnesses.


2011 ◽  
Vol 23 (04) ◽  
pp. 347-373 ◽  
Author(s):  
PIETER NAAIJKENS

We consider various aspects of Kitaev's toric code model on a plane in the C*-algebraic approach to quantum spin systems on a lattice. In particular, we show that elementary excitations of the ground state can be described by localized endomorphisms of the observable algebra. The structure of these endomorphisms is analyzed in the spirit of the Doplicher–Haag–Roberts program (specifically, through its generalization to infinite regions as considered by Buchholz and Fredenhagen). Most notably, the statistics of excitations can be calculated in this way. The excitations can equivalently be described by the representation theory of [Formula: see text], i.e. Drinfel'd's quantum double of the group algebra of ℤ2.


Sign in / Sign up

Export Citation Format

Share Document