discrete symmetry
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 37)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Vol 128 (1) ◽  
Author(s):  
Noam Chai ◽  
Anatoly Dymarsky ◽  
Michael Smolkin
Keyword(s):  

Author(s):  
Shun Zhou

Abstract Three-flavor neutrino oscillations in matter can be described by three effective neutrino masses mi (for i = 1, 2, 3) and the effective mixing matrix Vαi (for α = e, µ, τ and i = 1, 2, 3). When the matter parameter a ≡ 2√2GFNeE is taken as an independent variable, a complete set of first-order ordinary differential equations for m2 i and |Vαi|2have been derived in the previous works. In the present paper, we point out that such a system of differential equations possesses both the continuous symmetries characterized by one-parameter Lie groups and the discrete symmetry associated with the permutations of three neutrino mass eigenstates. The implications of these symmetries for solving the differential equations and looking for differential invariants are discussed.


2021 ◽  
Vol 38 (12) ◽  
pp. 127101
Author(s):  
Yunqing Ouyang ◽  
Qing-Rui Wang ◽  
Zheng-Cheng Gu ◽  
Yang Qi

In recent years, great success has been achieved on the classification of symmetry-protected topological (SPT) phases for interacting fermion systems by using generalized cohomology theory. However, the explicit calculation of generalized cohomology theory is extremely hard due to the difficulty of computing obstruction functions. Based on the physical picture of topological invariants and mathematical techniques in homotopy algebra, we develop an algorithm to resolve this hard problem. It is well known that cochains in the cohomology of the symmetry group, which are used to enumerate the SPT phases, can be expressed equivalently in different linear bases, known as the resolutions. By expressing the cochains in a reduced resolution containing much fewer basis than the choice commonly used in previous studies, the computational cost is drastically reduced. In particular, it reduces the computational cost for infinite discrete symmetry groups, like the wallpaper groups and space groups, from infinity to finity. As examples, we compute the classification of two-dimensional interacting fermionic SPT phases, for all 17 wallpaper symmetry groups.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Ivo de Medeiros Varzielas ◽  
Igor P. Ivanov ◽  
Miguel Levy

AbstractWe develop methods to study the scalar sector of multi-Higgs models with large discrete symmetry groups that are softly broken. While in the exact symmetry limit, the model has very few parameters and can be studied analytically, proliferation of quadratic couplings in the most general softly broken case makes the analysis cumbersome. We identify two sets of soft breaking terms which play different roles: those which preserve the symmetric vacuum expectation value alignment, and the remaining terms which shift it. Focusing on alignment preserving terms, we check which structural features of the symmetric parent model are conserved and which are modified. We find remarkable examples of structural features which are inherited from the parent symmetric model and which persist even when no exact symmetry is left. The general procedure is illustrated with the example of the three-Higgs-doublet model with the softly broken symmetry group $$\Sigma (36)$$ Σ ( 36 ) .


2021 ◽  
Author(s):  
Allen D Hill ◽  
Julie Nantel

Gait asymmetry is present in several pathological populations, including those with Parkinson's disease, Huntington's disease, and stroke survivors. Previous studies suggest that commonly used discrete symmetry metrics, which compare single bilateral variables, may not be equally sensitive to underlying effects of asymmetry, and the use of a metric with low sensitivity could result in unnecessarily low statistical power. The purpose of this study was to provide a comprehensive assessment of the sensitivity of commonly used discrete symmetry metrics to better inform design of future studies. Monte Carlo simulations were used to estimate the statistical power of each symmetry metric at a range of asymmetry magnitudes, group/condition variabilities, and sample sizes. Power was estimated by repeated comparison of simulated symmetric and asymmetric data with a paired t-test, where the proportion of significant results is equivalent to the power. Simulation results confirmed that not all common discrete symmetry metrics are equally sensitive to reference effects of asymmetry. Multiple symmetry metrics exhibit equivalent sensitivities, but the most sensitive discrete symmetry metric in all cases is a bilateral difference (e.g. left - right). A ratio (e.g. left/right) has poor sensitivity when group/condition variability is not small, but a log-transformation produces increased sensitivity. Additionally, two metrics which included an absolute value in their definitions showed increased sensitivity when the absolute value was removed. Future studies should consider metric sensitivity when designing analyses to reduce the possibility of underpowered research.


Author(s):  
Bruno Nachtergaele ◽  
Robert Sims ◽  
Amanda Young

AbstractWe study the stability with respect to a broad class of perturbations of gapped ground-state phases of quantum spin systems defined by frustration-free Hamiltonians. The core result of this work is a proof using the Bravyi–Hastings–Michalakis (BHM) strategy that under a condition of local topological quantum order (LTQO), the bulk gap is stable under perturbations that decay at long distances faster than a stretched exponential. Compared to previous work, we expand the class of frustration-free quantum spin models that can be handled to include models with more general boundary conditions, and models with discrete symmetry breaking. Detailed estimates allow us to formulate sufficient conditions for the validity of positive lower bounds for the gap that are uniform in the system size and that are explicit to some degree. We provide a survey of the BHM strategy following the approach of Michalakis and Zwolak, with alterations introduced to accommodate more general than just periodic boundary conditions and more general lattices. We express the fundamental condition known as LTQO by means of an indistinguishability radius, which we introduce. Using the uniform finite-volume results, we then proceed to study the thermodynamic limit. We first study the case of a unique limiting ground state and then also consider models with spontaneous breaking of a discrete symmetry. In the latter case, LTQO cannot hold for all local observables. However, for perturbations that preserve the symmetry, we show stability of the gap and the structure of the broken symmetry phases. We prove that the GNS Hamiltonian associated with each pure state has a non-zero spectral gap above the ground state.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
David Curtin ◽  
Shayne Gryba

Abstract Many minimal models of dark matter (DM) or canonical solutions to the hierarchy problem are either excluded or severely constrained by LHC and direct detection null results. In particular, Higgs Portal Dark Matter (HPDM) features a scalar coupling to the Higgs via a quartic interaction, and obtaining the measured relic density via thermal freeze-out gives definite direct detection predictions which are now almost entirely excluded. The Twin Higgs solves the little hierarchy problem without coloured top partners by introducing a twin sector related to the Standard Model (SM) by a discrete symmetry. We generalize HPDM to arbitrary Twin Higgs models and introduce Twin Higgs Portal Dark Matter (THPDM), which features a DM candidate with an SU(4)-invariant quartic coupling to the Twin Higgs scalar sector. Given the size of quadratic corrections to the DM mass, its most motivated scale is near the mass of the radial mode. In that case, DM annihilation proceeds with the full Twin Higgs portal coupling, while direct detection is suppressed by the pNGB nature of the 125 GeV Higgs. For a standard cosmological history, this results in a predicted direct detection signal for THPDM that is orders of magnitude below that of HPDM with very little dependence on the precise details of the twin sector, evading current bounds but predicting possible signals at next generation experiments. In many Twin Higgs models, twin radiation contributions to ∆Neff are suppressed by an asymmetric reheating mechanism. We study this by extending the νMTH and X MTH models to include THPDM and compute the viable parameter space according to the latest CMB bounds. The injected entropy dilutes the DM abundance as well, resulting in additional suppression of direct detection below the neutrino floor.


2021 ◽  
Author(s):  
Jeremie M. Unterberger

Abstract We give a new constructive proof of the infrared behavior of the Euclidean Gross-Neveu model in two dimensions with small coupling and large component number N. Our argument does not rely on the use of an intermediate (auxiliary bosonic) field. Instead bubble series are resummed by hand, and determinant bounds replaced by a control of local factorials relying on combinatorial arguments and Pauli's principle. The discrete symmetry-breaking is ensured by considering the model directly with a mass counterterm chosen in such a way as to cancel tadpole diagrams. Then the fermion two-point function is shown to decay (quasi-)exponentially as in [12]/


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
A. E. Cárcamo Hernández ◽  
Ivo de Medeiros Varzielas ◽  
M. L. López-Ibáñez ◽  
Aurora Melis

Abstract We propose a 3+1 Higgs Doublet Model based on the ∆(27) family symmetry supplemented by several auxiliary cyclic symmetries leading to viable Yukawa textures for the Standard Model fermions, consistent with the observed pattern of fermion masses and mixings. The charged fermion mass hierarchy and the quark mixing pattern is generated by the spontaneous breaking of the discrete symmetries due to flavons that act as Froggatt-Nielsen fields. The tiny neutrino masses arise from a radiative seesaw mechanism at one loop level, thanks to a preserved $$ {Z}_2^{(1)} $$ Z 2 1 discrete symmetry, which also leads to stable scalar and fermionic dark matter candidates. The leptonic sector features the predictive cobimaximal mixing pattern, consistent with the experimental data from neutrino oscillations. For the scenario of normal neutrino mass hierarchy, the model predicts an effective Majorana neutrino mass parameter in the range 3 meV ≲ mββ ≲ 18 meV, which is within the declared range of sensitivity of modern experiments. The model predicts Flavour Changing Neutral Currents which constrain the model, for instance, μ→e nuclear conversion processes and Kaon mixing are found to be within the reach of the forthcoming experiments.


Sign in / Sign up

Export Citation Format

Share Document