quantum spin chain
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 29)

H-INDEX

33
(FIVE YEARS 2)

Author(s):  
Livia Corsi ◽  
Giuseppe Genovese

AbstractWe study the isotropic XY quantum spin chain with a time-periodic transverse magnetic field acting on a single site. The asymptotic dynamics is described by a highly resonant Floquet–Schrödinger equation, for which we show the existence of a periodic solution if the forcing frequency is away from a discrete set of resonances. This in turn implies the state of the quantum spin chain to be asymptotically a periodic function synchronised with the forcing, also at arbitrarily low non-resonant frequencies. The behaviour at the resonances remains a challenging open problem.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Rafael I. Nepomechie ◽  
Ana L. Retore

Abstract We investigate the effect of introducing a boundary inhomogeneity in the transfer matrix of an integrable open quantum spin chain. We find that it is possible to construct a local Hamiltonian, and to have quantum group symmetry. The boundary inhomogeneity has a profound effect on the Bethe ansatz solution.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Pengcheng Lu ◽  
Yi Qiao ◽  
Junpeng Cao ◽  
Wen-Li Yang ◽  
Kang jie Shi ◽  
...  

Abstract A new nonlinear integral equation (NLIE) describing the thermodynamics of the Heisenberg spin chain is derived based on the t − W relation of the quantum transfer matrices. The free energy of the system in a magnetic field is thus obtained by solving the NLIE. This method can be generalized to other lattice quantum integrable models. Taking the SU(3)-invariant quantum spin chain as an example, we construct the corre- sponding NLIEs and compute the free energy. The present results coincide exactly with those obtained via other methods previously.


2021 ◽  
Vol 965 ◽  
pp. 115333
Author(s):  
Guang-Liang Li ◽  
Panpan Xue ◽  
Pei Sun ◽  
Hulin Yang ◽  
Xiaotian Xu ◽  
...  

2021 ◽  
Vol 21 (3&4) ◽  
pp. 255-265
Author(s):  
Rafael I. Nepomechie

We consider the feasibility of studying the anisotropic Heisenberg quantum spin chain with the Variational Quantum Eigensolver (VQE) algorithm, by treating Bethe states as variational states, and Bethe roots as variational parameters. For short chains, we construct exact one-magnon trial states that are functions of the variational parameter, and implement the VQE calculations in Qiskit. However, exact multi-magnon trial states appear to be out out of reach.


Sign in / Sign up

Export Citation Format

Share Document