The July 1998 Papua New Guinea Earthquake: Mechanism and Quantification of Unusual Tsunami Generation

2003 ◽  
Vol 160 (10-11) ◽  
pp. 2087-2118 ◽  
Author(s):  
Kenji Satake ◽  
Yuichiro Tanioka
2009 ◽  
Vol 186 (3-4) ◽  
pp. 210-222 ◽  
Author(s):  
Eli Silver ◽  
Simon Day ◽  
Steve Ward ◽  
Gary Hoffmann ◽  
Pilar Llanes ◽  
...  

2003 ◽  
Vol 3 (5) ◽  
pp. 391-402 ◽  
Author(s):  
P. Watts ◽  
S. T. Grilli ◽  
J. T. Kirby ◽  
G. J. Fryer ◽  
D. R. Tappin

Abstract. Case studies of landslide tsunamis require integration of marine geology data and interpretations into numerical simulations of tsunami attack. Many landslide tsunami generation and propagation models have been proposed in recent time, further motivated by the 1998 Papua New Guinea event. However, few of these models have proven capable of integrating the best available marine geology data and interpretations into successful case studies that reproduce all available tsunami observations and records. We show that nonlinear and dispersive tsunami propagation models may be necessary for many landslide tsunami case studies. GEOWAVE is a comprehensive tsunami simulation model formed in part by combining the Tsunami Open and Progressive Initial Conditions System (TOPICS) with the fully non-linear Boussinesq water wave model FUNWAVE. TOPICS uses curve fits of numerical results from a fully nonlinear potential flow model to provide approximate landslide tsunami sources for tsunami propagation models, based on marine geology data and interpretations. In this work, we validate GEOWAVE with successful case studies of the 1946 Unimak, Alaska, the 1994 Skagway, Alaska, and the 1998 Papua New Guinea events. GEOWAVE simulates accurate runup and inundation at the same time, with no additional user interference or effort, using a slot technique. Wave breaking, if it occurs during shoaling or runup, is also accounted for with a dissipative breaking model acting on the wave front. The success of our case studies depends on the combination of accurate tsunami sources and an advanced tsunami propagation and inundation model.


Author(s):  
Donald Denoon ◽  
Kathleen Dugan ◽  
Leslie Marshall

1984 ◽  
Vol 29 (10) ◽  
pp. 786-788
Author(s):  
Patricia M. Greenfield

2012 ◽  
Author(s):  
Esteban Tristan ◽  
Mei-Chuan Kung ◽  
Peter Caccamo

2013 ◽  
Author(s):  
KipliJoan Minol ◽  
Yoshifumi Chisaki ◽  
Tsuyoshi Usagawa

Sign in / Sign up

Export Citation Format

Share Document