tsunami propagation
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 56)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Vol 946 (1) ◽  
pp. 012023
Author(s):  
P Korolev ◽  
Yu Korolev ◽  
A Loskutov

Abstract Three earthquakes occurred in the North Pacific in 2020, causing observable tsunamis. The tsunamis were not devastating. Numerical modelling of tsunami propagation was performed to reproduce operational forecasting (retrospective analysis) of waveforms at deep-water stations. Direct calculation of tsunami using USGS finite-fault source data on GPU was carried out. The leap-frog (Arakawa staggered grid) scheme calculation over the Pacific Ocean on a regular grid with a spatial step of 0.5 arc minutes of 1440 min (1 day) tsunami propagation was performed in approximately 90 min of computer time. With use of a hybrid cluster with several GPU accelerators and proper optimization of the simulation algorithm, this time can be reduced by tens of times. Consequently, the time for estimating the transfer function will be comparable to the travel time of a tsunami to the stations, where the forecasts data is. It will make possible to forecast the shape of a tsunami at any point with a lead time enough to decide for tsunami alert at sites where a tsunami poses a real danger. The calculation results are in good agreement with the real data of deep-ocean measurements. The quality of the forecast is comparable to the quality of calculations by other methods.


2021 ◽  
Vol 925 (1) ◽  
pp. 012035
Author(s):  
H Khoirunnisa ◽  
S Karima ◽  
G Gumbira ◽  
R A Rachman

Abstract On 14th January 2021, there was a devastating earthquake (Mw 6.2) hit Mamuju and Majene, West Sulawesi, Indonesia at 18.28 UTC. According to National Disaster Management Authority, this event causes 84 casualties and 279 houses were damaged. The Sulawesi Island is situated in a very complex tectonic region, there are several thrusts and faults along the area such as Majene Thrust, Palu-Karo Thrust, Matano Fault, and Tolo Thrust that can lead to tectonic activities. One of the largest earthquakes was a 7.9 Mw in 1997 generated from North Sulawesi Megathrust that caused a catastrophic tsunami. Moreover, there were 9 tsunami events in the Makassar Strait from the year 1800 to 1999. In this research, three different scenarios of the tsunami in Majene were applied to obtain the tsunami elevation. Makassar Strait could be potentially generated tsunami wave from submarine landslides due to its steep bathymetry that will impact the coastline at Sulawesi and Kalimantan, so it is necessary to model the tsunami propagation using submarine landslide as the tsunami generation. The volume of submarine landslide had been used in tsunami submarine landslide modelling as an input. Those are included the height, width and length of the submarine landslide volume. Furthermore, the domain bathymetry was obtained from National Bathymetry (BatNas) with spacing grid of 300 m × 300 m. The submarine landslide coordinate is also needed as a source of tsunami at 2.98°S and 118.94°E. The slide angle and slope angle are also inputted in this modelling with three experimental volumes, namely 1 km3, 0.8 km3, and 0.5 km3. This submarine landslide tsunami modelling used the Non-Hydrostatic WAVE Model (NHWAVE) method to obtain tsunami wave generation. The result from NHWAVE model will be used for initial elevation of tsunami wave propagation using the Fully Nonlinear Boussinesq wave model - Total Variation Diminishing (FUNWAVE - TVD) method. The highest initial tsunami elevation value at each observation point obtained from the NHWAVE model occurred at point 18 (the closest location to the earthquake source), which is around 0.4 –1.2 m. The FUNWAVE simulation result is the tsunami wave propagation for 180 minutes later. In the 180th minute, the tsunami wave was still propagating towards the north of Sulawesi Island to the east of Kalimantan Island.


2021 ◽  
Vol 21 (7) ◽  
pp. 2093-2108
Author(s):  
Takenori Shimozono

Abstract. Tsunamis rarely occur in a specific area, and their occurrence is highly uncertain. Suddenly generated from their sources in deep water, they occasionally undergo tremendous amplification in shallow water to devastate low-lying coastal areas. Despite the advancement of computational power and simulation algorithms, there is a need for novel and rigorous approaches to efficiently predict coastal amplification of tsunamis during different disaster management phases, such as tsunami risk assessment and real-time forecast. This study presents convolution kernels that can instantly predict onshore waveforms of water surface elevation and flow velocity from observed/simulated wave data away from the shore. Kernel convolution involves isolating an incident-wave component from the offshore wave data and transforming it into the onshore waveform. Moreover, unlike previously derived ones, the present kernels are based on shallow-water equations with a damping term and can account for tsunami attenuation on its path to the shore with a damping parameter. Kernel convolution can be implemented at a low computational cost compared to conventional numerical models that discretise the spatial domain. The prediction capability of the kernel method was demonstrated through application to real-world tsunami cases.


2021 ◽  
pp. SP519-2020-128
Author(s):  
Filippo Zaniboni ◽  
Gianluca Pagnoni ◽  
Glauco Gallotti ◽  
Stefano Tinti ◽  
Alberto Armigliato

AbstractIschia Island has been repeatedly affected by mass collapses, which are mainly caused by the steepness of the main peak (Mt. Epomeo) and by phenomena related to its volcanic activity.The most relevant cases of mass failure studied in the literature and postulated to be tsunamigenic cover a wide spectrum of sizes, from sector collapse to small-volume mass transports. Tsunamis generated by landslides in Ischia may affect the coast of the Campania mainland, including the Gulf of Naples.The focus of this work is the evaluation of the pattern of the maximum tsunami energy. To this purpose, we perform a series of numerical simulations by moving the same landslide source in different hypothetical positions around the island. The landslide dynamics is computed through the code UBO-BLOCK, and the tsunami propagation by employing the code UBO-TSUFD, both in-house developed. The final goal is to characterize the coastal areas of the Campania mainland most exposed to tsunami attack from Ischia sources.It is found that the position of the landslide influences deeply the distribution of the tsunami elevation in the coastal stretch north of the Procida Mount, while, remarkably, it is irrelevant inside the Gulf of Naples where the bathymetric effect prevails.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahesh N. Shrivastava ◽  
Ajeet K. Maurya ◽  
Gabriel Gonzalez ◽  
Poikayil S. Sunil ◽  
Juan Gonzalez ◽  
...  

AbstractTo unravel the relationship between earthquake and tsunami using ionospheric total electron content (TEC) changes, we analyzed two Chilean tsunamigenic subduction earthquakes: the 2014 Pisagua Mw 8.1 and the 2015 Illapel Mw 8.3. During the Pisagua earthquake, the TEC changes were detected at the GPS sites located to the north and south of the earthquake epicenter, whereas during the Illapel earthquake, we registered the changes only in the northward direction. Tide-gauge sites mimicked the propagation direction of tsunami waves similar to the TEC change pattern during both earthquakes. The TEC changes were represented by three signals. The initial weaker signal correlated well with Acoustic Rayleigh wave (AWRayleigh), while the following stronger perturbation was interpreted to be caused by Acoustic Gravity wave (AGWepi) and Internal Gravity wave (IGWtsuna) induced by earthquakes and subsequent tsunamis respectively. Inevitably, TEC changes can be utilized to evaluate earthquake occurrence and tsunami propagation within a framework of multi-parameter early warning systems.


2021 ◽  
Vol 9 (5) ◽  
pp. 453
Author(s):  
Björn R. Röbke ◽  
Tim Leijnse ◽  
Gundula Winter ◽  
Maarten van Ormondt ◽  
Joana van Nieuwkoop ◽  
...  

This study demonstrates the skills of D-FLOW Flexible Mesh (FM) and SFINCS (Super-Fast INundation of CoastS) in combination with the Delft Dashboard Tsunami Toolbox to numerically simulate tsunami offshore propagation and inundation based on the example of the 2011 Tōhoku tsunami in Japan. Caused by a megathrust earthquake, this is one of the most severe tsunami events in recent history, resulting in vast inundation and devastation of the Japanese coast. The comparison of the simulated with the measured offshore water levels at four DART buoys located in the Northwestern Pacific Ocean shows that especially the FM but also the SFINCS model accurately reproduce the observed tsunami propagation. The inundation observed at the Sendai coast is well reproduced by both models. All in all, the model outcomes are consistent with the findings gained in earlier simulation studies. Depending on the specific needs of future tsunami simulations, different possibilities for the application of both models are conceivable: (i) the exclusive use of FM to achieve high accuracy of the tsunami offshore propagation, with the option to use an all-in-one model domain (no nesting required) and to add tsunami sediment dynamics, (ii) the combined use of FM for the accurate simulation of the tsunami propagation and of SFINCS for the accurate and time efficient simulation of the onshore inundation and (iii) the exclusive use of SFINCS to get a reliable picture of the tsunami propagation and accurate results for the onshore inundation within seconds of computational time. This manuscript demonstrates the suitability of FM and SFINCS for the rapid and reliable assessment of tsunami propagation and inundation and discusses use cases of the three model combinations that form an important base for tsunami risk management.


2021 ◽  
Author(s):  
Mandi C. Thran ◽  
Sascha Brune ◽  
Jody M. Webster ◽  
Dale Dominey-Howes ◽  
Daniel Harris

Sign in / Sign up

Export Citation Format

Share Document