tsunami generation
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 51)

H-INDEX

32
(FIVE YEARS 2)

2022 ◽  
Vol 245 ◽  
pp. 110244
Author(s):  
Yaxiong Shen ◽  
Colin N. Whittaker ◽  
Emily M. Lane ◽  
William Power ◽  
Bruce W. Melville

2022 ◽  
pp. 101943
Author(s):  
James T. Kirby ◽  
Stephan T. Grilli ◽  
Juan Horrillo ◽  
Philip L.-F. Liu ◽  
Dmitry Nicolsky ◽  
...  

2021 ◽  
Vol 21 (11) ◽  
pp. 3489-3508
Author(s):  
Jean Roger ◽  
Bernard Pelletier ◽  
Maxime Duphil ◽  
Jérôme Lefèvre ◽  
Jérôme Aucan ◽  
...  

Abstract. On 5 December 2018, a magnitude Mw 7.5 earthquake occurred southeast of Maré, an island of the Loyalty Islands archipelago, New Caledonia. This earthquake is located at the junction between the plunging Loyalty Ridge and the southern part of the Vanuatu Arc, in a tectonically complex and very active area regularly subjected to strong seismic crises and earthquakes higher than magnitude 7 and up to 8. Widely felt in New Caledonia, it was immediately followed by a tsunami warning, confirmed shortly after by a first wave arrival at the Loyalty Islands tide gauges (Maré and Lifou), and then along the east coast of Grande Terre of New Caledonia and in several islands of the Vanuatu Archipelago. Two solutions of the seafloor initial deformation are considered for tsunami generation modeling, one using a non-uniform finite-source model from USGS and the other being a uniform slip model built from the Global Centroid Moment Tensor (GCMT) solution, with the geological knowledge of the region and empirical laws establishing relationships between the moment magnitude and the fault plane geometry. Both tsunami generation and propagation are simulated using the Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM), an open-source modeling code solving the shallow-water equations on an unstructured grid allowing refinement in many critical areas. The results of numerical simulations are compared to tide gauge records, field observations and testimonials from 2018. Careful inspection of wave amplitude and wave energy maps for the two simulated scenarios shows clearly that the heterogeneous deformation model is inappropriate, while it raises the importance of the fault plane geometry and azimuth for tsunami amplitude and directivity. The arrival times, wave amplitude and polarities obtained with the uniform slip model are globally coherent, especially in far-field locations (Hienghène, Poindimié and Port Vila). Due to interactions between the tsunami waves and the numerous bathymetric structures like the Loyalty and Norfolk ridges in the neighborhood of the source, the tsunami propagating toward the south of Grande Terre and the Isle of Pines is captured by these structures acting like waveguides, allowing it to propagate to the north-northwest, especially in the Loyalty Islands and along the east coast of Grande Terre. A similar observation results from the propagation in the Vanuatu islands, from Aneityum to Efate.


2021 ◽  
Vol 9 (10) ◽  
pp. 1144
Author(s):  
Grigory Dolgikh ◽  
Stanislav Dolgikh

Basing on the analysis of data on variations of deformations in the Earth’s crust, which were obtained with a laser strainmeter, we found that deformation anomalies (deformation jumps) occurred at the time of tsunami generation. Deformation jumps recorded by the laser strainmeter were apparently caused by bottom displacements, leading to tsunami formation. According to the data for the many recorded tsunamigenic earthquakes, we calculated the damping ratios of the identified deformation anomalies for three regions of the planet. We proved the obtained experimental results by applying the sine-Gordon equation, the one-kink and two-kink solutions of which allowed us to describe the observed deformation anomalies. We also formulated the direction of a theoretical deformation jump occurrence—a kink (bore)—during an underwater landslide causing a tsunami.


Author(s):  
Natalia Lipiejko ◽  
Colin N. Whittaker ◽  
Emily M. Lane ◽  
James D. L. White ◽  
William L. Power

Sign in / Sign up

Export Citation Format

Share Document