Multiple Solutions of Nonlinear Impulsive Differential Equations with Dirichlet Boundary Conditions via Variational Method

2011 ◽  
Vol 63 (1-2) ◽  
pp. 611-628 ◽  
Author(s):  
Dan Zhang
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yuhua Long ◽  
Shaohong Wang ◽  
Jiali Chen

Abstract In the present paper, a class of fourth-order nonlinear difference equations with Dirichlet boundary conditions or periodic boundary conditions are considered. Based on the invariant sets of descending flow in combination with the mountain pass lemma, we establish a series of sufficient conditions on the existence of multiple solutions for these boundary value problems. In addition, some examples are provided to demonstrate the applicability of our results.


2021 ◽  
Vol 14 (3) ◽  
pp. 706-722
Author(s):  
Francis Ohene Boateng ◽  
Joseph Ackora-Prah ◽  
Benedict Barnes ◽  
John Amoah-Mensah

In this paper, we introduce a Finite Difference Fictitious Domain Wavelet Method (FDFDWM) for solving two dimensional (2D) linear elliptic  partial differential equations (PDEs) with Dirichlet boundary conditions on regular geometric domain. The method reduces the 2D PDE into a 1D system of ordinary differential equations and applies a compactly supported wavelet to approximate the solution. The problem is embedded in a fictitious domain to aid the enforcement of the Dirichlet boundary conditions. We present numerical analysis and show that our method yields better approximation to the solution of the Dirichlet problem than traditional methods like the finite element and finite difference methods.


Author(s):  
Mónica Clapp ◽  
Manuel Del Pino ◽  
Monica Musso

We consider the equation−Δu = |u|4/(N−2)u + εf(x) under zero Dirichlet boundary conditions in a bounded domain Ω in RN exhibiting certain symmetries, with f ≥ 0, f ≠ 0. In particular, we find that the number of sign-changing solutions goes to infinity for radially symmetric f, as ε → 0 if Ω is a ball. The same is true for the number of negative solutions if Ω is an annulus and the support of f is compact in Ω.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Liu Yang

We consider the existence of infinitely many classical solutions to a class of impulsive differential equations with Dirichlet boundary value condition. Our main tools are based on variant fountain theorems and variational method. We study the case in which the nonlinearity is sublinear. Some recent results are extended and improved.


Sign in / Sign up

Export Citation Format

Share Document