young’s lattice
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Pawel Caputa ◽  
Shouvik Datta

Abstract We investigate and characterize the dynamics of operator growth in irrational two-dimensional conformal field theories. By employing the oscillator realization of the Virasoro algebra and CFT states, we systematically implement the Lanczos algorithm and evaluate the Krylov complexity of simple operators (primaries and the stress tensor) under a unitary evolution protocol. Evolution of primary operators proceeds as a flow into the ‘bath of descendants’ of the Verma module. These descendants are labeled by integer partitions and have a one-to-one map to Young diagrams. This relationship allows us to rigorously formulate operator growth as paths spreading along the Young’s lattice. We extract quantitative features of these paths and also identify the one that saturates the conjectured upper bound on operator growth.


10.37236/9982 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Antoine Abram ◽  
Nathan Chapelier-Laget ◽  
Christophe Reutenauer

Motivated by the study of affine Weyl groups, a ranked poset structure is defined on the set of circular permutations in $S_n$ (that is, $n$-cycles). It is isomorphic to the poset of so-called admitted vectors, and to an interval in the affine symmetric group $\tilde S_n$ with the weak order. The poset is a semidistributive lattice, and the rank function, whose range is cubic in $n$, is computed by some special formula involving inversions. We prove also some links with Eulerian numbers, triangulations of an $n$-gon, and Young's lattice.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Ricky Liu ◽  
Christian Smith

The up-operators $u_i$ and down-operators $d_i$ (introduced as Schur operators by Fomin) act on partitions by adding/removing a box to/from the $i$th column if possible. It is well known that the $u_i$ alone satisfy the relations of the (local) plactic monoid, and the present authors recently showed that relations of degree at most 4 suffice to describe all relations between the up-operators. Here we characterize the algebra generated by the up- and down-operators together, showing that it can be presented using only quadratic relations.


2021 ◽  
Vol vol. 22 no. 2, Permutation... (Combinatorics) ◽  
Author(s):  
Colin Defant

We give three applications of a recently-proven "Decomposition Lemma," which allows one to count preimages of certain sets of permutations under West's stack-sorting map $s$. We first enumerate the permutation class $s^{-1}(\text{Av}(231,321))=\text{Av}(2341,3241,45231)$, finding a new example of an unbalanced Wilf equivalence. This result is equivalent to the enumeration of permutations sortable by ${\bf B}\circ s$, where ${\bf B}$ is the bubble sort map. We then prove that the sets $s^{-1}(\text{Av}(231,312))$, $s^{-1}(\text{Av}(132,231))=\text{Av}(2341,1342,\underline{32}41,\underline{31}42)$, and $s^{-1}(\text{Av}(132,312))=\text{Av}(1342,3142,3412,34\underline{21})$ are counted by the so-called "Boolean-Catalan numbers," settling a conjecture of the current author and another conjecture of Hossain. This completes the enumerations of all sets of the form $s^{-1}(\text{Av}(\tau^{(1)},\ldots,\tau^{(r)}))$ for $\{\tau^{(1)},\ldots,\tau^{(r)}\}\subseteq S_3$ with the exception of the set $\{321\}$. We also find an explicit formula for $|s^{-1}(\text{Av}_{n,k}(231,312,321))|$, where $\text{Av}_{n,k}(231,312,321)$ is the set of permutations in $\text{Av}_n(231,312,321)$ with $k$ descents. This allows us to prove a conjectured identity involving Catalan numbers and order ideals in Young's lattice. Comment: 20 pages, 4 figures. arXiv admin note: text overlap with arXiv:1903.09138


10.37236/6888 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Martha Yip

The set of $n$ by $n$ upper-triangular nilpotent matrices with entries in a finite field $\mathbb{F}_q$ has Jordan canonical forms indexed by partitions $\lambda \vdash n$. We present a combinatorial formula for computing the number $F_\lambda(q)$ of matrices of Jordan type $\lambda$ as a weighted sum over standard Young tableaux. We construct a bijection between paths in a modified version of Young's lattice and non-attacking rook placements, which leads to a refinement of the formula for $F_\lambda(q)$.


2016 ◽  
Vol 9 (6) ◽  
pp. 185-188
Author(s):  
A. Hadjipanteli ◽  
◽  
E. N. Zois ◽  
A. Nassiopoulos ◽  
◽  
...  

10.37236/3579 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
James Propp ◽  
Tom Roby

Many invertible actions $\tau$ on a set $\mathcal{S}$ of combinatorial objects, along with a natural statistic $f$ on $\mathcal{S}$, exhibit the following property which we dub homomesy: the average of $f$ over each $\tau$-orbit in $\mathcal{S}$ is the same as the average of $f$ over the whole set $\mathcal{S}$. This phenomenon was first noticed by Panyushev in 2007 in the context of the rowmotion action on the set of antichains of a root poset; Armstrong, Stump, and Thomas proved Panyushev's conjecture in 2011. We describe a theoretical framework for results of this kind  that applies more broadly, giving examples in a variety of contexts. These include linear actions on vector spaces, sandpile dynamics, Suter's action on certain subposets of Young's Lattice, Lyness 5-cycles, promotion of rectangular semi-standard Young tableaux, and the rowmotion and promotion actions on certain posets. We give a detailed description of the latter situation for products of two chains.  


2015 ◽  
Vol 143 (11) ◽  
pp. 4695-4703 ◽  
Author(s):  
Tommy Wuxing Cai ◽  
Richard P. Stanley

10.37236/4641 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Sam Hopkins ◽  
Ingrid Zhang

Oscillating tableaux are certain walks in Young's lattice of partitions; they generalize standard Young tableaux. The shape of an oscillating tableau is the last partition it visits and the length of an oscillating tableau is the number of steps it takes. We define a new statistic for oscillating tableaux that we call weight: the weight of an oscillating tableau is the sum of the sizes of all the partitions that it visits.  We show that the average weight of all oscillating tableaux of shape $\lambda$ and length $|\lambda|+2n$ (where $|\lambda|$ denotes the size of $\lambda$ and $n \in \mathbb{N}$) has a surprisingly simple formula: it is a quadratic polynomial in $|\lambda|$ and $n$. Our proof via the theory of differential posets is largely computational. We suggest how the homomesy paradigm of Propp and Roby may lead to a more conceptual proof of this result and reveal a hidden symmetry in the set of perfect matchings.


Sign in / Sign up

Export Citation Format

Share Document