scholarly journals The Weak Order on Pattern-Avoiding Permutations

10.37236/4000 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Brian Drake

The weak order on the symmetric group is a well-known partial order which is also a lattice. We consider subposets of the weak order consisting of permutations avoiding a single pattern, characterizing the patterns for which the subposet is a lattice. These patterns have only a single small ascent or descent. We prove that all patterns for which the subposet is a sublattice have length at most three.

Author(s):  
Henri Mühle

AbstractOrdering permutations by containment of inversion sets yields a fascinating partial order on the symmetric group: the weak order. This partial order is, among other things, a semidistributive lattice. As a consequence, every permutation has a canonical representation as a join of other permutations. Combinatorially, these canonical join representations can be modeled in terms of arc diagrams. Moreover, these arc diagrams also serve as a model to understand quotient lattices of the weak order. A particularly well-behaved quotient lattice of the weak order is the well-known Tamari lattice, which appears in many seemingly unrelated areas of mathematics. The arc diagrams representing the members of the Tamari lattices are better known as noncrossing partitions. Recently, the Tamari lattices were generalized to parabolic quotients of the symmetric group. In this article, we undertake a structural investigation of these parabolic Tamari lattices, and explain how modified arc diagrams aid the understanding of these lattices.


Author(s):  
Heather M Russell ◽  
Julianna Tymoczko

Abstract Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $\mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (e.g., Kazhdan–Lusztig polynomials). By ”flattening” the braiding maps, webs can also be viewed as the basis elements of a symmetric group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, which measure depths of regions inside the web. As an application, we resolve an open conjecture that the change of basis between the so-called Specht basis and web basis of this symmetric group representation is unitriangular for $\mathfrak{sl}_3$-webs ([ 33] and [ 29].) We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $\mathfrak{sl}_2$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others [ 12, 17, 29, 33]. We also prove that though the new partial order for $\mathfrak{sl}_3$-webs is a refinement of the previously studied tableau order, the two partial orders do not agree for $\mathfrak{sl}_3$.


10.37236/9982 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Antoine Abram ◽  
Nathan Chapelier-Laget ◽  
Christophe Reutenauer

Motivated by the study of affine Weyl groups, a ranked poset structure is defined on the set of circular permutations in $S_n$ (that is, $n$-cycles). It is isomorphic to the poset of so-called admitted vectors, and to an interval in the affine symmetric group $\tilde S_n$ with the weak order. The poset is a semidistributive lattice, and the rank function, whose range is cubic in $n$, is computed by some special formula involving inversions. We prove also some links with Eulerian numbers, triangulations of an $n$-gon, and Young's lattice.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Henri Mühle ◽  
Nathan Williams

International audience We present a generalization of the Tamari lattice to parabolic quotients of the symmetric group. More precisely, we generalize the notions of 231-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients, and show bijectively that these sets are equinumerous. Furthermore, the restriction of weak order on the parabolic quotient to the parabolic 231-avoiding permutations is a lattice quotient. Lastly, we suggest how to extend these constructions to all Coxeter groups. Nous présentons une généralisation du treillis de Tamari aux quotients paraboliques du groupe symétrique. Plus précisément, nous généralisons les notions de permutations qui évitent le motif 231, les partitions non-croisées, et les partitions non-emboîtées aux quotients paraboliques, et nous montrons de façon bijective que ces ensembles sont équipotents. En restreignant l’ordre faible du quotient parabolique aux permutations paraboliques qui évitent le motif 231, on obtient un quotient de treillis d’ordre faible. Enfin, nous suggérons comment étendre ces constructions à tous les groupes de Coxeter.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Sebastian A. Csar ◽  
Rik Sengupta ◽  
Warut Suksompong

International audience We discuss some properties of a subposet of the Tamari lattice introduced by Pallo (1986), which we call the comb poset. We show that three binary functions that are not well-behaved in the Tamari lattice are remarkably well-behaved within an interval of the comb poset: rotation distance, meets and joins, and the common parse words function for a pair of trees. We relate this poset to a partial order on the symmetric group studied by Edelman (1989). Nous discutons d'un subposet du treillis de Tamari introduit par Pallo. Nous appellons ce poset le comb poset. Nous montrons que trois fonctions binaires qui ne se comptent pas bien dans le trellis de Tamari se comptent bien dans un intervalle du comb poset : distance dans le trellis de Tamari, le supremum et l'infimum et les parsewords communs. De plus, nous discutons un rapport entre ce poset et un ordre partiel dans le groupe symétrique étudié par Edelman.


Author(s):  
Toufik Mansour ◽  
Mark Shattuck

By a movable letter within a pattern avoiding permutation, we mean one that may be transposed with its predecessor while still avoiding the pattern. In this paper, we enumerate permutations avoiding a single pattern of length three according to the number of movable letters, thereby obtaining new q- analogues of the Catalan number sequence. Indeed, we consider the joint distribution with the statistics recording the number of descents and occurrences of certain vincular patterns. To establish several of our results, we make use of the kernel method to solve the functional equations that arise.


10.37236/2680 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Teresa X.S. Li ◽  
Melissa Y.F. Miao

Let $\Phi$ denote  Foata's second fundamental transformation on permutations. For a permutation $\sigma$ in the symmetric group $S_n$, let $\widetilde{\Lambda}_{\sigma}=\{\pi\in S_n\colon\pi\leq_{w} \sigma\}$ be the principal order ideal generated by $\sigma$  in the weak order $\leq_{w}$. Björner and Wachs have shown that $\widetilde{\Lambda}_{\sigma}$ is invariant under $\Phi$ if and only if $\sigma$ is a 132-avoiding permutation. In this paper, we consider the invariance property of  $\Phi$ on the principal order ideals ${\Lambda}_{\sigma}=\{\pi\in S_n\colon \pi\leq \sigma\}$ with respect to the Bruhat order $\leq$.  We obtain a characterization  of permutations $\sigma$ such that ${\Lambda}_{\sigma}$ are invariant under $\Phi$. We also consider the invariant principal order  ideals with respect to the Bruhat order  under Han's bijection $H$. We find  that ${\Lambda}_{\sigma}$ is invariant under the bijection $H$ if and only if it is invariant under the transformation $\Phi$.


2017 ◽  
Vol 27 (05) ◽  
pp. 501-546
Author(s):  
Ryoichi Kase

This paper treats algebras whose support [Formula: see text]-tilting posets are isomorphic to the poset of the symmetric group with the weak order. We determine such algebras in terms of quivers and relations.


Sign in / Sign up

Export Citation Format

Share Document